• Title/Summary/Keyword: In vivo imaging

Search Result 390, Processing Time 0.025 seconds

In vivo Dendritic Cell Migration Tracking Using Near-infrared (NIR) Imaging (Near-infrared (NIR) 영상기법을 이용한 생체 내 수지상세포의 이동)

  • Lee, Jun-Ho;Jung, Nam-Chul;Lee, Eun Gae;Lim, Dae-Seog
    • KSBB Journal
    • /
    • v.27 no.5
    • /
    • pp.295-300
    • /
    • 2012
  • Matured dendritic cells (DCs) begin migration with their release from the bone marrow (BM) into the blood and subsequent traffic into peripheral lymphoid and non-lymphoid tissues. Throughout this long movement, migrating DCs must apply specialized skills to reach their target destination. Non-invasive in vivo cell-tracking techniques are necessary to advance immune cell-based therapies. In this study, we used a DiD cell-tracking solution for in vivo dendritic cell tracking in naive mice. We tracked DiD (non-invasive fluorescence dye)-labeled mature dendritic cells using the Near Infrared (NIR) imaging system in normal mice. We examined the immunophenotype of DiD-labeled cells compared with non-labelled mature DCs, and obtained time-serial images of NIR-DC trafficking after mouse footpad injection. In conclusion, we confirmed that DiD-labeled DCs migrated into the popliteal lymph node 24 h after the footpad injection. Here, these data suggested that the cell tracking system with the stable fluorescence dye DiD was useful as a cell tracking tool to advance dendritic cell-based immunotherapy.

Exploring the Thalamus of the Human Brain using Tractography Analysis at 3Tesla MRI (3 Tesla MRI에서 트랙토그래피 분석을 이용한 시상 탐색)

  • Im, Sang-Jin;Kim, Joo-Yeon;Baek, Hyeon-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.555-564
    • /
    • 2021
  • Thalamus is known to play an important role in the regulation of nerve function. Thalamus, located in the center of the brain, is involved in sleep, arousal, and emotional regulation, and has been reported to be associated with multiple sclerosis, essential tremors, and neurodegenerative diseases such as Parkinson's disease. In addition, it has been reported that iron deposits in the thalamus can cause depressive symptoms with age. Although there are discrepancies between studies, it can be deduced that the thalamus region has a clear effect on neurological disorders due to a strong relationship between the thalamus and neurological functions such as emotional control and processing. Through tractography analysis, the connectivity between the detailed areas of each subcortical region was investigated in the form of a matrix, showing strong connectivity and weak interhemispheric connectivity. In the 59> group, the WM connectivity of thalamus was found to be weaker than those of the two groups. Comparisons between the two groups showed that the young groups (10-39 and 40-59) had higher connection intensity than the 59> group and that statistically significant differences in 3 connection pathways were found in each hemisphere. A decrease in thalamus-related connection strength in aging has shown that it can affect emotional and neurological disorders such as anxiety and depression, and network measurements can help assess cognitive impairment across clinical conditions.

Contrast Enhancement of Laser Speckle Contrast Image in Deep Vasculature by Reduction of Tissue Scattering

  • Son, Taeyoon;Lee, Jonghwan;Jung, Byungjo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.86-90
    • /
    • 2013
  • Various methods have been proposed for enhancing the contrast of laser speckle contrast image (LSCI) in subcutaneous blood flow measurements. However, the LSCI still suffers from low image contrast due to tissue turbidity. Herein, a physicochemical tissue optical clearing (PCTOC) method was employed to enhance the contrast of LSCI. Ex vivo and in vivo experiments were performed with porcine skin samples and male ICR mice, respectively. The ex vivo LSCIs were obtained before and 90 min after the application of the PCTOC and in vivo LSCIs were obtained for 60 min after the application of the PCTOC. In order to obtain the skin recovery images, saline was applied for 30 min after the application of the PCTOC was completed. The visible appearance of the tubing under ex vivo samples and the in vivo vasculature gradually enhanced over time. The LSCI increased as a function of time after the application of the PCTOC in both ex vivo and in vivo experiments, and properly recovered to initial conditions after the application of saline in the in vivo experiment. The LSCI combined with the PCTOC was greatly enhanced even in deep vasculature. It is expected that similar results will be obtained in in vivo human studies.

Nuclear Imaging of Cellular Proliferation (핵의학적 세포증식 영상)

  • Yeo, Jeong-Seok
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.198-204
    • /
    • 2004
  • Tumor cell proliferation is considered to be a useful prognostic indicator of tumor aggressiveness and tumor response to therapy but in vitro measurement of individual proliferation is complex and tedious work. PET imaging provides a noninvasive approach to measure tumor growth rate in situ. Early approaches have used $^{18}F$-FDG or methionine to monitor proliferation status. These 2 tracers detect changes in glucose and amino acid metabolism, respectively, and therefore provide only an indirect measure of proliferation status. More recent studies have focused on DNA synthesis itself as a marker of cell proliferation. Cell lines and tissues with a high proliferation rate require high rates of DNA synthesis. $[^{11}C]Thymidine$ was the first radiotracer for noninvasive imaging of tumor proliferation. The short half-life of $^{11}C$ and rapid metabolism of $[^{11}C]Thymidine$ in vivo make the radiotracer less suitable for routing use. Halogenated thymidine analogs such as 5-iodo-2-deoxyuridine (IUdR) can be successfully used as cell proliferation markers for in vitro studies because these compounds are rapidly incorporated into newly synthesized DNA. IUdR has been evaluated as a potential in vivo tracer in nuclear medicing but the image qualify and the calculation of proliferation rates are impaired by its rapid in vivo degradation. Hence, the thymidine analog $3'-deoxy-3'-^{18}F-fluorothymidine$ (FLT) was recently introduced as a stable proliferation marker with a suitable nuclide half-life and stable in vivo. $[^{18}F]FLT$ is phosphorylated to 3-fluorothymidine monophosphate by thymidine kinase 1 and reflects thymidine kinase 1 activity in proliferating cell. $[^{18}F]FLT$ PET is feasible in clincal use and well correlates with cellular proliferation. Choline is a precursor for the biosynthesis of phospholipids (in particular, phosphatidylcholine), which is the essential component of all eukaryotic cell membranes and $[^{11}C]choline$, which is a new marker for cellular proliferation.

Comparison of Positron Emission Tomography(PET) imaging-based initial in vivo pharmacokinetics by administration routes of [18F]FDG

  • Yiseul Choi;Jang Woo Park;Eun Sang Lee;Ok-Sun Kim;Hye Kyung Chung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.99-103
    • /
    • 2021
  • In this study, the initial in vivo pharmacokinetic changes according to the routes of drug administration were investigated using bioimaging techniques. The purpose of this study was to quantify the degree of distribution of each major organ in normal mice over time by acquiring Positron Emission Tomography/Computed Tomography images while administering routes F-18 fluorodeoxyglucose such as intravenous, intraperitoneal and per oral, a representative diagnostic radiopharmaceutical. Dynamic Positron Emission Tomography images were acquired for 90 minutes after drug administration. Radioactivity uptake was calculated for major organs using the PMOD program. In the case of intravenous administration, it was confirmed that it spread quickly and evenly to major organs. Compared to intravenous administration, intraperitoneal administration was about three times more absorbed and distributed in the liver and intestine, and it was showed that the amount excreted through the bladder was more than twice. In the case of oral administration, most stayed in the stomach, and it was showed that it spread slowly throughout the body. In comparison with intravenous administration, it was presented that the distribution of kidneys was more than 9 times and the distribution of bladder was 66% lower. Since there is a difference in the initial in vivo distribution and excretion of each administration method, we confirmed that the determination of the administration route is important for in vivo imaging evaluation of new drug candidates.

Induced neural stem cells from human patient-derived fibroblasts attenuate neurodegeneration in Niemann-Pick type C mice

  • Hong, Saetbyul;Lee, Seung-Eun;Kang, Insung;Yang, Jehoon;Kim, Hunnyun;Kim, Jeyun;Kang, Kyung-Sun
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.7.1-7.13
    • /
    • 2021
  • Background: Niemann-Pick disease type C (NPC) is caused by the mutation of NPC genes, which leads to the abnormal accumulation of unesterified cholesterol and glycolipids in lysosomes. This autosomal recessive disease is characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. Recently, the application of induced neural stem cells (iNSCs), converted from fibroblasts using specific transcription factors, to repair degenerated lesions has been considered a novel therapy. Objectives: The therapeutic effects on NPC by human iNSCs generated by our research group have not yet been studied in vivo; in this study, we investigate those effects. Methods: We used an NPC mouse model to efficiently evaluate the therapeutic effect of iNSCs, because neurodegeneration progress is rapid in NPC. In addition, application of human iNSCs from NPC patient-derived fibroblasts in an NPC model in vivo can give insight into the clinical usefulness of iNSC treatment. The iNSCs, generated from NPC patientderived fibroblasts using the SOX2 and HMGA2 reprogramming factors, were transplanted by intracerebral injection into NPC mice. Results: Transplantation of iNSCs showed positive results in survival and body weight change in vivo. Additionally, iNSC-treated mice showed improved learning and memory in behavior test results. Furthermore, through magnetic resonance imaging and histopathological assessments, we observed delayed neurodegeneration in NPC mouse brains. Conclusions: iNSCs converted from patient-derived fibroblasts can become another choice of treatment for neurodegenerative diseases such as NPC.

Cardiovascular Molecular Imaging (심장 분자영상)

  • Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • Molecular imaging strives to visualize processes in living subjects at the molecular level. Monitoring biochemical processes at this level will allow us to directly track biological processes and signaling events that lead to pathophysiological abnormalities, and help make personalized medicine a reality by allowing evaluation of therapeutic efficacies on an individual basis. Although most molecular imaging techniques emerged from the field of oncology, they have now gradually gained acceptance by the cardiovascular community. Hence, the availability of dedicated high-resolution small animal imaging systems and specific targeting imaging probes is now enhancing our understanding of cardiovascular diseases and expediting the development of newer therapies. Examples include imaging approaches to evaluate and track the progress of recent genetic and cellular therapies for treatment of myocardial ischemia. Other areas include in vivo monitoring of such key molecular processes as angiogenesis and apoptosis, Cardiovascular molecular imaging is already an important research tool in preclinical experiments. The challenge that lies ahead is to implement these techniques into the clinics so that they may help fulfill the promise of molecular therapies and personalized medicine, as well as to resolve disappointments and controversies surrounding the field.

Development of a High-Speed Endoscopic OCT System and Its Application to Three-Dimensional Intravascular Imaging in Vivo (고속 내시경적 OFDI 시스템 개발과 이를 이용한 3차원 생체 혈관 내부 이미징)

  • Cho, Han Saem;Jang, Sun-Joo;Oh, Wang-Yuhl
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.2
    • /
    • pp.67-71
    • /
    • 2014
  • Intravascular optical coherence tomography (OCT) enables imaging of the three-dimensional (3D) microstructure of a blood vessel wall. While 3D vascular visualization provides detailed information of the vessel wall and intraluminal structures, a longitudinal imaging pitch that is several times bigger than the imaging resolution of the system has limited true high-resolution 3D imaging. In this paper we demonstrate high-speed intravascular OCT in vivo, acquiring images at a rate of 350 frames per second. A 47-mm-long rabbit aorta was imaged in 3.7 seconds, after a short flush with contrast agent. The longitudinal imaging pitch was 34 micrometers, comparable to the transverse imaging resolution of the system. Three-dimensional volume rendering showed greatly enhanced visualization of tissue microstructure and stent struts, relative to what is provided by conventional intravascular imaging speeds.

Molecular imaging application of iron oxide nanoradiomaterial

  • Ran Ji Yoo;Ji Yong Park;Tae Hyeon Choi;Jin Sil Kim;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.133-140
    • /
    • 2021
  • Various iron oxide nanoparticle-based radiomaterials(IO-NRM) can be used for multimodal imaging of magnetic resonance imaging and molecular imaging, can be easily sized, can be easily functionalized, and have biocompatibility, making them a very good platform for molecular imaging. Based on the previously revealed molecular imaging technology of iron oxide nanoparticles, this paper introduces the in vivo distribution and use in various diseases through iron oxide nanoparticles-based radiolabeled compounds for diagnosis and treatment of iron oxide nanoparticles-based molecular imaging platforms. We would like to look forward to its potential as a radiopharmaceutical.