• Title/Summary/Keyword: In vivo imaging

Search Result 387, Processing Time 0.03 seconds

Synthesis and evaluation of inhibitors for Polo-box domain of Polo-like kinase 1

  • Eun Kyoung Ryu
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • Polo-like kinase 1 (Plk1) is a key protein in mitosis and has been validated as a target for tumor therapy. It is well known to highly overexpress in many kinds of tumor, which has been implicated as a potential biomarker for tumor treatment and diagnosis. Plk1 consists of two domains, the N-terminus kinase domain and the C-terminus polo-box domain (PBD). The inhibitors have been developed for PBD of Plk1, which were shown a high level of affinity and selectivity for Plk1 that led to mitotic arrest and apoptotic cell death. This review discusses the inhibitors for PBD of Plk1 that are suitable for in vivo tumor treatment. They can be further extended for developing in vivo imaging probes for early diagnosis of tumor.

Poloxamer 407 Hydrogels for Intravesical Instillation to Mouse Bladder: Gel-Forming Capacity and Retention Performance

  • Kim, Sang Hyun;Kim, Sung Rae;Yoon, Ho Yub;Chang, In Ho;Whang, Young Mi;Cho, Min Ji;Kim, Myeong Joo;Kim, Soo Yeon;Lee, Sang Jin;Choi, Young Wook
    • The Korean Journal of Urological Oncology
    • /
    • 제15권3호
    • /
    • pp.178-186
    • /
    • 2017
  • Purpose: Poloxamer 407 (P407) thermo-sensitive hydrogel formulations were developed to enhance the retention time in the urinary bladder after intravesical instillation. Materials and Methods: P407 hydrogels (P407Gels) containing 0.2 w/w% fluorescein isothiocyanate dextran (FD, MW 4 kDa) as a fluorescent probe were prepared by the cold method with different concentrations of the polymer (20, 25, and 30 w/w%). The gel-forming capacities were characterized in terms of gelation temperature (G-Temp), gelation time (G-Time), and gel duration (G-Dur). Homogenous dispersion of the probe throughout the hydrogel was observed by using fluorescence microscopy. The in vitro bladder simulation model was established to evaluate the retention and drug release properties. P407Gels in the solution state were administered to nude mice via urinary instillation, and the in vivo retention behavior of P407Gels was visualized by using an in vivo imaging system (IVIS). Results: P407Gels showed a thermo-reversible phase transition at $4^{\circ}C$ (refrigerated; sol) and $37^{\circ}C$ (body temperature; gel). The G-Temp, G-Time, and G-Dur of FD-free P407Gels were approximately $10^{\circ}C-20^{\circ}C$, 12-30 seconds, and 12-35 hours, respectively, and were not altered by the addition of FD. Fluorescence imaging showed that FD was spread homogenously in the gelled P407 solution. In a bladder simulation model, even after repeated periodic filling-emptying cycles, the hydrogel formulation displayed excellent retention with continuous release of the probe over 8 hours. The FD release from P407Gels and the erosion of the gel, both of which followed zero-order kinetics, had a linear relationship ($r^2=0.988$). IVIS demonstrated that the intravesical retention time of P407Gels was over 4 hours, which was longer than that of the FD solution (<1 hour), even though periodic urination occurred in the mice. Conclusions: FD release from P407Gels was erosion-controlled. P407Gels represent a promising system to enhance intravesical retention with extended drug delivery.

Direction of Tissue Contraction after Microwave Ablation: A Comparative Experimental Study in Ex Vivo Bovine Liver

  • Junhyok Lee;Hyunchul Rhim;Min Woo Lee;Tae Wook Kang;Kyoung Doo Song;Jeong Kyong Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.42-51
    • /
    • 2022
  • Objective: This study aimed to investigate the direction of tissue contraction after microwave ablation in ex vivo bovine liver models. Materials and Methods: Ablation procedures were conducted in a total of 90 sites in ex vivo bovine liver models, including the surface (n = 60) and parenchyma (n = 30), to examine the direction of contraction of the tissue in the peripheral and central regions from the microwave antenna. Three commercially available 2.45-GHz microwave systems (Emprint, Neuwave, and Surblate) were used. For surface ablation, the lengths of two overlapped square markers were measured after 2.5- and 5-minutes ablations (n = 10 ablations for each system for each ablation time). For parenchyma ablation, seven predetermined distances between the markers were measured on the cutting plane after 5- and 10-minutes ablations (n = 5 ablations for each system for each ablation time). The contraction in the radial and longitudinal directions and the sphericity index (SI) of the ablation zones were compared between the three systems using analysis of variance. Results: In the surface ablation experiment, the mean longitudinal contraction ratio and SI from a 5-minutes ablation using the Emprint, Neuwave, and Surblate systems were 28.92% and 1.04, 20.10% and 0.53, and 24.90% and 0.45, respectively (p < 0.001). A positive correlation between longitudinal contraction and SI was noted, and a similar radial contraction was observed. In the parenchyma ablation experiment, the mean longitudinal contraction ratio and SI from a 10-minutes ablation using the three pieces of equipment were 38.60% and 1.06, 32.45% and 0.61, and 28.50% and 0.50, respectively (p < 0.001). There was a significant difference in the longitudinal contraction properties, whereas there was no significant difference in the radial contraction properties. Conclusion: The degree of longitudinal contraction showed significant differences depending on the microwave ablation equipment, which may affect the SI of the ablation zone.

Demonstration of the Usefulness of Optical Coherence Tomography in Imaging a Mouse Tail Model of Lymphedema

  • Kim, Hui Dong;Kim, Dong Kyu;Chae, Yu-Gyeong;Park, Seok Gyo;Kim, Ghi Chan;Jeong, Ho Joong;Sim, Young-Joo;Ahn, Yeh-Chan
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.132-137
    • /
    • 2017
  • To investigate the usefulness of optical coherence tomography (OCT) for imaging lymphedema, we directly compared it to other histological methods in a mouse model of lymphedema. We performed detailed imaging of the lymphedema lesion on a mouse tail. We imaged the mouse tail in vivo with OCT and created histopathological samples. We constructed a spectrometer-based OCT system using a fiber-optic Michelson interferometer. The light was directed to 50:50 couplers that split the light into reference and sample arms. Backscattered light from a reference mirror and the sample produced an interference fringe. An OCT image of the lymphedema model revealed an inflammatory reaction of the skin that was accompanied by edema, leading to an increase in the light attenuation in the dermal and subcutaneous layers. Similar to OCT image findings, histological biopsy showed an inflammatory response that involved edema, increased neutrophils in epidermis and subdermis, and lymphatic microvascular dilatation. Furthermore, the lymphedema model showed an increase in thickness of the dermis in both diagnostic studies. In the mouse tail model of lymphedema, OCT imaging showed very similar results to other histological examinations. OCT provides a quick and useful diagnostic imaging technique for lymphedema and is a valuable addition or complement to other noninvasive imaging tools.

Efficient Implementation of Synthetic Aperture Imaging with Virtual Source Element in B-mode Ultrasound System Based on Sparse Array (희박 어레이 기반의 효율적인 양방향 화소단위 집속 기법의 구현)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.419-430
    • /
    • 2002
  • In this paper. we propose an efficient method for implementing hi-directional pixel-based focusing(BiPBF) based on a sparse array imaging technique. The proposed method can improve spatial resolution and frame rate of ultrasound imaging with reduced hardware complexity by synthesizing transmit apertures with a small number of sparsely distributed subapertures. As the distance between adjacent subapertures increases, however. the image resolution tends to decrease due to the elevation of grating lobes. Such grating lobes can be eliminated in conventional synthetic aperture imaging techniques. On the contrary, grating lobes arisen from employing sparse synthetic transmit apertures can not be eliminated, which has been shown analytically in this paper. We also propose the condition and method for suppressing the grating lobes below -40dB, which is generally required in practical imaging. by placing the transmit focal depth at a near depth and properly selecting the subaperture distance in Proportion to receive aperture size. The results of both the Phantom and in vivo experiments show that the proposed method implements two-wav dynamic focusing using a smaller number of subapertures, resulting in reduced system complexity and increased frame rate.

Reduction of Seam Line Using an FIR Filter in Spatially Compounded Ultrasonic Diagnostic Images (공간합성된 초음파 의료영상에서 FIR 필터를 이용한 심라인 감소방법)

  • Choi, Myoung Hwan
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.129-133
    • /
    • 2008
  • A method to reduce seam line artifact in spatial compounding of ultrasonic images is presented. Spatial compounding is a speckle reducing imaging technique in which a number of ultrasound images of a given target that have been obtained from multiple view angles are combined into a single compounded image by combining the data received from each data point in the compounded image. Since different view angle results in different view area, and the images of different view arms are combined into an image, the compounded image consists of regions with different signal to noise ratio, and the boundary lines between these regions are visible as seam lines in the compounded images. In this paper, we present an algorithm that reduces the visibility of this seam line in the spatially compounded images. Design procedure for a FIH filter is described and the results of applying the filter to in-vivo ultrasonic images are analyzed.

  • PDF

Adaptive quantization for effective data-rate reduction in ultrafast ultrasound imaging (초고속 초음파 영상의 효과적인 데이터율 저감을 위한 적응 양자화)

  • Doyoung Jang;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.422-428
    • /
    • 2023
  • Ultrafast ultrasound imaging has been applied to various imaging approaches, including shear wave elastography, ultrafast Doppler, and super-resolution imaging. However, these methods are still challenging in real-time implementation for three Dimension (3D) or portable applications because of their massive data rate required. In this paper, we proposed an adaptive quantization method that effectively reduces the data rate of large Radio Frequency (RF) data. In soft tissue, ultrasound backscatter signals require a high dynamic range, and thus typical quantization used in the current systems uses the quantization level of 10 bits to 14 bits. To alleviate the quantization level to expand the application of ultrafast ultrasound imaging, this study proposed a depth-sectional quantization approach that reduces the quantization errors. For quantitative evaluation, Field II simulations, phantom experiments, and in vivo imaging were conducted and CNR, spatial resolution, and SSIM values were compared with the proposed method and fixed quantization method. We demonstrated that our proposed method is capable of effectively reducing the quantization level down to 3-bit while minimizing the image quality degradation.

Synthesis and Functionalization of Upconversion Nanoparticles for Bioimaging (바이오 이미징을 위한 업컨버전 나노입자(upconversion nanoparticles)의 합성 및 특성화)

  • Cho, Hye In;Lee, Jae-Seung
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.270-282
    • /
    • 2018
  • The increasing importance of biomedical imaging technology has led to the development of a variety of luminescent materials, including molecular fluorophores, fluorescent proteins, and quantum dots. Owing to their inherent disadvantages, such as insufficient chemical stability and limited biocompatability, their utilization has been limited with imaging only under highly optimized and controlled conditions. Recently, a new class of luminescent nanoparticles, upconversion nanoparticles (UCNPs), have been emerging as a practically useful nanoprobe for various bioimaging applications. The detailed synthesis, functionalization, properties and in-vitro / in-vivo applications of the UCNPs are introduced and discussed in this Review.

Brain Iron Imaging in Aging and Cognitive Disorders: MRI Approaches (노화 및 인지기능장애에서 뇌 철 영상 기법: 자기공명영상을 이용한 접근)

  • Jinhee Jang;Junghwa Kang;Yoonho Nam
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.527-537
    • /
    • 2022
  • Iron has a vital role in the human body, including the central nervous system. Increased deposition of iron in the brain has been reported in aging and important neurodegenerative diseases. Owing to the unique magnetic resonance properties of iron, MRI has great potential for in vivo assessment of iron deposition, distribution, and non-invasive quantification. In this paper, we will review the MRI methods for iron assessment and their changes in aging and neurodegenerative diseases, focusing on Alzheimer's disease. In addition, we will summarize the limitations of current approaches and introduce new areas and MRI methods for iron imaging that are expected in the future.

A Review on Brain Study Methods in Elementary Science Education - A Focus on the fMRl Method - (초등 과학 교육에서 두뇌 연구 방법의 고찰 - fMRI 활용법을 중심으로 -)

  • Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.1
    • /
    • pp.49-62
    • /
    • 2007
  • The higher cognitive functions of the human brain including teaming are hypothesized to be selectively distributed across large-scale neural networks interconnected to the cortical and subcortical areas. Recently, advances in functional imaging have made it possible to visualize the brain areas activated by certain cognitive activities in vivo. Neural substrates for teaming and motivation have also begun to be revealed. Functional magnetic resonance imaging (fMRI) provides a non-invasive indirect mapping of cerebral activity, based on the blood- oxygen level dependent (BOLD) contrast which is based on the localized hemodynamic changes following neural activities in certain areas of the brain. The fMRI method is now becoming an essential tool used to define the neuro-functional mechanisms of higher brain functions such as memory, language, attention, learning, plasticity and emotion. Further research in the field of education will accelerate the verification of the effects on loaming or help in the selection of model teaching strategies. Thus, the purpose of this study was to review brain study methods using fMRI in science education. In conclusion, a number of possible strategies using fMRI for the study of elementary science education were suggested.

  • PDF