• Title/Summary/Keyword: In vivo detection

Search Result 184, Processing Time 0.033 seconds

Real-time Assay of Toxic Lead in In Vivo Living Plant Tissue

  • Ly, SuwYoung;Kim, Nack Joo;Youn, Minsang;Kim, Yongwook;Sung, Yeolmin;Kim, Dohoon;Chung, Tackhyun
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.293-298
    • /
    • 2013
  • A method of detecting lead was developed using square wave anodic stripping voltammetry (SWASV) with DNA-carbon nanotube paste electrode (CNTPE). The results indicated a sensitive oxidation peak current of lead on the DNA-CNTPE. The curves were obtained within a concentration range of 50 $ngL^{-1}-20mgL^{-1}$ with preconcentration time of 100, 200, and 400 sec at the concentration of $mgL^{-1}$, ${\mu}gL^{-1}$, and $ngL^{-1}$, respectively. The observed relative standard deviation was 0.101% (n = 12) in the lead concentration of 30.0 ${\mu}gL^{-1}$ under optimum conditions. The low detection limit (S/N) was pegged at 8 $ngL^{-1}$ ($2.6{\times}10^{-8}M$). Results showed that the developed method can be used in real-time assay in vivo without requiring any pretreatment and pharmaceutical samples, and food samples, as well as other materials requiring water source contamination analyses.

Detection of Pesticide Thiram in Plant Leafs Using Voltammetric at Nanotube Electrode (나노튜브전극을 사용한 전압전류법에 의한 식물잎에서 살충제 검출)

  • Lee, Chang-Hyun;Ly, Suw-Young
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1335-1341
    • /
    • 2010
  • Voltammetric diagnostics of pesticide thiram was studied in plant leafs in vivo fluid with DNA immobilized on a carbon nanotube electrode (DCE). Sensor properties of carbon nanotube (CE) and DNA immobilized nanotube were compared. DCE was more effective than CE in target detecting. The parameters such as pH strength, stripping accumulation, amplitude, and increment potential were examined to find the optimum condition for detection of pesticide thiram in a sesame leaf. The optimized conditions were as follows 550 Hz frequency, 0.15 V amplitude, 0.005 V increment potential, -1.2 V initial potential, 4.78 pH, 500 sec accumulation time. Under optimum condition, the detection limit of thiram was attained at 0.01ng/L.

Optimized phos-tag mobility shift assay for the detection of protein phosphorylation in planta

  • Hussain, Shah;Nguyen, Nhan Thi;Nguyen, Xuan Canh;Lim, Chae Oh;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.322-327
    • /
    • 2018
  • Post-translational modification of proteins regulates signaling cascades in eukaryotic system, including plants. Among these modifications, phosphorylation plays an important role in modulating the functional properties of proteins. Plants perceive environmental cues that directly affect the phosphorylation status of many target proteins. To determine the effect of environmentally induced phosphorylation in plants, in vivo methods must be developed. Various in vitro methods are available but, unlike in animals, there is no optimized methodology for detecting protein phosphorylation in planta. Therefore, in this study, a robust, and easy to handle Phos-Tag Mobility Shift Assay (PTMSA) is developed for the in vivo detection of protein phosphorylation in plants by empirical optimization of methods previously developed for animals. Initially, the detection of the phosphorylation status of target proteins using protocols directly adapted from animals failed. Therefore, we optimized the steps in the protocol, from protein migration to the transfer of proteins to PVDF membrane. Supplementing the electrophoresis running buffer with 5mM $NaHSO_3$ solved most of the problems in protein migration and transfer. The optimization of a fast and robust protocol that efficiently detects the phosphorylation status of plant proteins was successful. This protocol will be a valuable tool for plant scientists interested in the study of protein phosphorylation.

Development of Virtual Endoscopy and Evaluation of Performance as a 3D Virtual Colonoscopy (가상내시경의 개발 및 가상 대장내시경으로 적용 시 성능평가)

  • 김정훈;이상훈;고성호;김상준
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.69-75
    • /
    • 2003
  • Virtual colonoscopy is one of the Powerful tool for non-invasive colon examination and many in-vitro and in-vivo studies have shown its accuracy in Polyp or adenoma detection. But most of virtual colonoscopy requires high quality workstation and software and its cost is high to setup whole system. We developed PC-based 3D model creation and navigation program which has diverse functions. It can be easily installed to PC and connected to network system. The performance. when used as a virtual colonoscopy. is evaluated by calculating sensitivity of detection for the simulated polyp which is artificially made inside the Pig's colon and checked its clinical feasibility, Its total sensitivity is 76%. Grouping according to Polyps diameter, the sensitivity for detection of polyps 10 ㎜ or larger was 100%(40 of 40); 5.0-9.9 ㎜, 90.0(90 of 100): and smaller then 5 ㎜. 36.7%(22 of 60).

Noble Metal Nanowire Based SERS Sensor

  • Gang, Tae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.87-87
    • /
    • 2013
  • The interface between nanomaterials and biosystems is emerging as one of the broadest and most dynamic areas of science and technology, bringing together biology, chemistry, physics and many areas of engineering, biomedicine. The combination of these diverse areas of research promised to yield revolutionary advances in healthcare, medicine, and life science. For example, the creation of new and powerful nanosensors that enable direct, sensitive, and rapid analysis of biological and chemical species can advance the diagnosis and treatment of disease, discovery and screening of new drug molecules. Nanowire based sensors are emerging as a powerful and general platform for ultrasensitive and multiplex detection of biological and chemical species. Here, we present the studies about noble metal nanowire sensors that can be used for sensitive detection of a wide-range of biological and chemical species including nucleic acids, proteins, and toxic metal ions. Moreover, the optical and electrochemical applications of noble metal nanowires are introduced. Noble metal nanowires are successfully used as plasmonic antennas and nanoelectrodes, thereby provide a pathway for a single molecule sensor, in vivo neural recording, and molecular injection and detection in a single living cell.

  • PDF

Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model

  • Wang, Sibo;Yang, Tao;Zhang, Xuyong;Xia, Jie;Guo, Jun;Wang, Xiaoyi;Hou, Jixue;Zhang, Hongwei;Chen, Xueling;Wu, Xiangwei
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.3
    • /
    • pp.291-299
    • /
    • 2016
  • Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation.

Real-time Voltammetric Assay of Cadmium Ions in Plant Tissue and Fish Brain Core

  • Ly, Suw-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1613-1617
    • /
    • 2006
  • Optimum analytical conditions for cyclic voltammetry (CV) and square wave (SW) stripping voltammetry were determined using mercury-mixed carbon nanotube paste electrode (PE). The results approached the microgram working ranges of SW: 10.0-80.0 $ugL^{-1}$ and CV: 100-700 $ugL^{-1}$ Cd (II); working conditions of 300-Hz frequency, 100 mV amplitude, 1.6 V accumulation potential, 400 sec accumulation time, and 40 mV increment potential. First, analysis was performed through direct assay of cadmium ions deep into the fishs brain core and plant tissue in real time with a preconcentration time of 400 sec. The relative standard deviation of 10.0 $mgL^{-1}$ Cd (II) observed was 0.064 (n = 12) at optimum conditions. The low detection limit (S/N) was set at 0.6 $ugL^{-1}$ ($5.33{\times}10^{-9}$ M). The methods can be used in direct analysis in vivo or in real-time monitoring of plant tissue.

Basis or In-Vivo and In-Vitro Thrombosis Detection of Mechanical Valve (In-Vivo 및 In-Vitro 실험을 통한 기계식 판막의 혈전현상 검출을 위한 기초연구)

  • Lee, H.S.;Lee, S.H.;Kim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.113-117
    • /
    • 1997
  • In this paper we detected the thrombosis formation by spectral analysis and neural network. Using microphone and amplifier, we measured the sound from the mechanical valve which is attached to the pneumatic ventricular assist device. The sound was sampled by A/D converter and the periodogram is the main algorithm or obtaining spectrum. We made the valvular thrombosis models using pellethane and silicon and they are thrombosis model on the disk, around the sewing ring and fibrous tissue growth across the orifice of valve. The spectrum of normal and 5 kinds of thrombotic valve were obtained and primary and secondary peak appeared in each spectrum waveform. So to distinguish the secondary peak of normal and thrombotic valve quantatively, 3 layer back propagation neural network.

  • PDF

Diagnostic ex vivo assay of glucose in live cell using voltammetry

  • Ly, Suw Young;Leea, Chang Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1379-1385
    • /
    • 2018
  • The hand held voltammetry systems searched diabetic assay using glucose sensor of fluorine nafion doped carbon nanotube electrode (FCNE). An inexpensive graphite carbon pencil was used as an Ag/AgCl reference and Pt counter electrode. Upon combining and using three electrode systems, optimum square wave (SW) stripping results were attained to 1.0-9.0 ug/L with 8 points. Statistic RSD precision was of 6.02 % with n=15 in 0.1 mg/L glucose. After a total of 200 second accumulation times, analytical detection limit of 0.8 ug/L was obtained. This developed technique was applied to urine samples from diabetic patients urine for fluid analysis, it was determined that the sensor can be used with a diagnostics in the ex vivo of live cells and non treated biological fluid.

The targeting peptides for tumor receptor imaging

  • Yim, Min Su;Ryu, Eun Kyoung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.63-68
    • /
    • 2016
  • Peptides have been developed for in vivo imaging probes against to the specific biomarker in the biological process of living systems. Peptide based imaging probes have been applied to identify and detect their active sites using imaging modalities, such as PET, SPECT and MRI. Especially, tumor receptor imaging with the peptides has been widely used to specific tumor detection. This review discusses the targeting peptides that have been successfully characterized for tumor diagnosis by receptor imaging.