• Title/Summary/Keyword: In vivo와 In vitro

Search Result 3,993, Processing Time 0.036 seconds

In Vitro and In Vivo Anticancer Activity of Gimatecan against Hepatocellular Carcinoma

  • Zhao, Youna;Lau, Lit-Fui;Dai, Xiangrong;Li, Benjamin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4853-4856
    • /
    • 2016
  • Objective: Gimatecan is a new camptothecin (CPT) analogue that inhibits tumor growth by targeting DNA topoisomerase I (TOP I) and introducing strong and persistent DNA cleavage. Anti-tumor activity has been demonstrated with a wide range of solid tumors in previous preclinical and clinical studies. Here, we investigated for the first time the effects of gimatecan on the proliferation of hepatocellular carcinoma (HCC) cells both in vitro and in vivo. Methods: Anticancer efficacy of gimatecan were evaluated in a panel of HCC cell lines and corresponding mouse xenograft models. Inhibition of cell proliferation was measured by CellTiter-Glo cell viability assay. In vivo, gimatecan and control preparations were orally administered every four days, for a total of four times. Tumor volume and body weights of the mice were measured twice weekly. Results: In vitro cytotoxicity evaluation showed that gimatecan inhibited the proliferation of a large panel of HCC cell lines in a dose dependent manner, with IC50 values ranging between 12.1~1085.0 nM. In vivo evaluation in mouse xenograft models showed significant antitumor effects of gimatecan at 0.8mg/kg and 0.4mg/kg as compared to the control group. Conclusion: This study suggested that gimatecan may have the potential to be used as a chemotherapeutic agent for the treatment of HCC.

Protective effect of Korean diet food groups on lymphocyte DNA damage and contribution of each food group to total dietary antioxidant capacity (TDAC) (한식 식품군의 in vitro 총 항산화능 (TDAC)과 ex vivo DNA 손상 보호효과와의 관련성)

  • Lee, Min Young;Han, Jeong-Hwa;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.49 no.5
    • /
    • pp.277-287
    • /
    • 2016
  • Purpose: This study was performed to compare total phenolic contents, in vitro antioxidant capacity, and reduction effect of Korean food groups on ex vivo DNA damage in human cells and analyze correlations between each indicator. Methods: Vegetable foods in the Korean diet based the results of the KNHANES V-2 (2011) were classified into 10 food groups: cereals, fruits, vegetables, nuts, kimchi, seaweeds, potatoes, mushrooms, legumes, and oils. Eighty-four foods constituted more than 1% of the total intake in each food group and finally designated as vegetable foods in the Korean diet. Total phenolic content of each food group was measured. Further, in vitro antioxidant capacity was measured based on DPPH radical scavenging assay, TEAC assay, and $ORAC_{ROO{\cdot}}$ assay. Ex vivo DNA damage in human lymphocytes was assessed using comet assay. Results: Total phenolic contents of food groups of the Korean diet increased in the order of mushrooms, fruits, vegetables, seaweeds, and kimchi. Meanwhile, antioxidant rankings of food groups as mean values from the three in vitro test methods increased in the order of mushrooms, seaweeds, vegetables, kimchi, and fruits. Protection against ex vivo DNA damage in human lymphocytes was highest in mushrooms, followed by vegetables, fruits, seaweeds, and kimchi. The rankings of the food groups for total phenolic content, in vitro DAC, and ex vivo DNA protection activity were similar, and correlations between each indicator were significantly high. Conclusion: Mushrooms, fruits, vegetables, and seaweeds among the tested food groups in the Korean diet showed high total phenolic contents, in vitro antioxidant capacities, and protection against DNA damage. Correlations between each indicator in terms of total phenolic content, in vitro antioxidant capacity, and ex vivo DNA protection between each food group were found to be particularly high.

Embryo Gender Ratio and Developmental Potential after Biopsy of In Vivo and In Vitro Produced Hanwoo Embryos

  • Cho, Sang-Rae;Choe, Chang-Young;Son, Jun-Kyu;Cho, In-Cheol;Yoo, Jae-Gyu;Kim, Hyung-Jong;Ko, Yeong-Gyu;Kim, Nam-Young;Han, Sang-Hyun;Park, Yong-Sang;Ko, Moon-Suck
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.269-273
    • /
    • 2012
  • The present study was to assess the in vitro viability and sexing rate of bovine embryos. Blastocysts were harvested on day 7~9 day after insemination(in vitro and in vivo), and the sex of the embryos was examined using the LAMP method. Embryo cell biopsy was carried out in a $80{\mu}l$ drop $Ca^{2+}$, $Mg^{2+}$ free D-PBS and, biopsied embryos viability were evaluated after more 12 h culture in IVMD culture medium. The formation of recovered embryo to expanded and hatching stages had ensued in higher of sexed embryo in vivo than in vitro (100% vs. 89%, p<0.05), and in vitro, the rates of degeneration after sexing were significantly (p<0.05) higher in vitro than in vivo(11% vs. 0.0%). The rates of the predicted sex were female 61% vs. 56%, and male 39% vs. 44% in vivo and in vitro, respectively. The rates of survival following different biopsy methods were seen between punching and bisection method in vivo and in vitro (100% vs. 89% and 100% vs, 78% respectively). Biopsy method by punching was significantly (p<0.05) higher than bisection between produced embryos in vivo and in vitro. The present data indicate that with microblade after punching for embryo sexing results in high incidence of survivability on development after embryo biopsy. It is also suggested that LAMP-based embryo sexing suitable for field applications.

Evaluation and Method of In Vitro Digestibility in Monogastric Animal Model (단위동물 모델에서 In vitro 소화율 측정과 평가)

  • Kang, Lyeongin;Kim, Jin Seon;Lee, Sung Sill;Chu, Gyo-Moon;Kim, Jin Wook
    • Journal of agriculture & life science
    • /
    • v.53 no.2
    • /
    • pp.15-26
    • /
    • 2019
  • An in vitro digestibility methods have been developed to mimic an in vivo system in the past decades. Because the in vivo techniques cause high cost, intensive labor, longer research periods and ethnical problems. In this review, the digestive systems from stomach to large intestine of pig as a monogastric animal were addressed to understand an in vivo digestion. The innovative in vitro technique using the Daisy II incubator was performed and the in vitro ileal and fecal dry matter (DM) digestibility of corn, rice, wheat and barley was determined.

Tectorigenin Promotes Osteoblast Differentiation and in vivo Bone Healing, but Suppresses Osteoclast Differentiation and in vivo Bone Resorption

  • Lee, So-Youn;Kim, Gyu-Tae;Yun, Hyung-Mun;Kim, Youn-Chul;Kwon, Il- Keun;Kim, Eun-Cheol
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.476-485
    • /
    • 2018
  • Although tectorigenin (TG), a major compound in the rhizome of Belamcanda chinensis, is conventionally used for the treatment of inflammatory diseases, its effects on osteogenesis and osteoclastogenesis have not been reported. The objective of this study was to investigate the effects and possible underlying mechanism of TG on in vitro osteoblastic differentiation and in vivo bone formation, as well as in vitro osteoclast differentiation and in vivo bone resorption. TG promoted the osteogenic differentiation of primary osteoblasts and periodontal ligament cells. Moreover, TG upregulated the expression of the BMP2, BMP4, and Smad-4 genes, and enhanced the expression of Runx2 and Osterix. In vivo studies involving mouse calvarial bone defects with ${\mu}CT$ and histologic analysis revealed that TG significantly increased new bone formation. Furthermore, TG treatment inhibited osteoclast differentiation and the mRNA levels of osteoclast markers. In vivo studies of mice demonstrated that TG caused the marked attenuation of bone resorption. These results collectively demonstrated that TG stimulated osteogenic differentiation in vitro, increased in vivo bone regeneration, inhibited osteoclast differentiation in vitro, and suppressed inflammatory bone loss in vivo. These novel findings suggest that TG may be useful for bone regeneration and treatment of bone diseases.

Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo -In vitro and in vivo Anticancer Activity of bio-Pt NPs-

  • Bendale, Yogesh;Bendale, Vineeta;Natu, Rammesh;Paul, Saili
    • Journal of Pharmacopuncture
    • /
    • v.19 no.2
    • /
    • pp.114-121
    • /
    • 2016
  • Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached $70-75mm^3$, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer.

Investigation of the Biodegradable Mechanism of Pure Magnesium Using Electrochemical Impedance Spectroscopy Technique

  • Kim, Woo-Cheol;Kim, Seon-Hong;Kim, Jung-Gu;Kim, Young-Yul
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.43-53
    • /
    • 2016
  • In this study, electrochemical impedance spectroscopy (EIS) was used to examine the changes in the electrochemical properties of biodegradable pure magnesium implanted into Sprague-Dawley rats for three days. The in vivo test results were compared with those of the in vitro tests carried out in Hank's, dilute saline and simulated body fluid (SBF) solutions. The in vitro corrosion rates were 20~1700 fold higher, as compared to the in vivo corrosion rates. This discrepancy is caused by biomolecule adsorption on the surface, which prevents the transport of water into the magnesium surface on in vivo testing. Among the in vitro experimental conditions, the corrosion rate in SBF solution had the least difference from the in vivo implanted specimen.

Results of Embryo Transfer with Hanwoo Embryos Produced In-Vivo or In-Vitro to Holstein Cows as Recipients (체내 또는 체외에서 생산된 한우 수정란을 젖소 수란우에 이식한 결과)

  • Kim, Yong-Jun;Park, Hoon;Lee, Hae-Lee;Shin, Dong-Su;Jo, Sung-Woo;Kim, Yong-Su;Kim, Sue-Hee
    • Journal of Embryo Transfer
    • /
    • v.23 no.3
    • /
    • pp.167-175
    • /
    • 2008
  • This study was performed to investigate the result that in-vivo or in-vitro embryos of Hanwoo cows were transferred to Holstein cows. Seventeen Hanwoo cows were used as donors for production of in-vivo embryos and fresh hanwoo in-vivo embryos were transferred to 1,150 Holsteins. And 2 embryos were transferred to 188 Holstein recipients to produce twin calves. Diagnosis on pregnancy was performed by rectal palpation at $60\sim90$ days after transfer. The pregnancy rate of Holstein recipients was 55.8% after transfer with Hanwoo in-vivo embryos and 38.2% after transfer with Hanwoo in-vitro embryos. The delivery rate of pregnant Holstein recipients was 88.4% after transfer with Hanwoo in-vivo embryos and 75.6% after transfer with Hanwoo in-vitro embryos. The rate of delivery of Holstein recipients transferred with two Hanwoo embryos was 36.2% and the rate of twin production was 25.9%. The rate of twin production by embryo transfer with in-vivo embryos was 30.4%, whereas the fate with in-vitro embryos was 15.6%. The pregnancy rate according to the grade of corpus luteum of Holstein recipients transferred with Hanwoo in-vitro embryos was 41.5 and 36.0% for A and B grade, respectively. The pregnancy rate according to the transfer in site in the uterine lumen of recipients was 40.9 and 32.7% for anterior and middle site, respectively. The pregnancy rate according to day of embryo transfer after estrus of recipients was 45.5, 38.8 and 39.7% for day 6, day 7 and day 8, respectively. There was difference of pregnancy rate according embryo transfer technician ($30.5\sim45.8%$) individual dairy farm ($21.1\sim51.0%$). These results are supposed to indicate that the rate of pregnancy after transfer with Hanwoo embryos to Holstein recipients was similar to that within the same breed, and consequently that this method would be beneficial to enhance the productivity in Hanwoo reproduction.

Evaluation of the Genetic Toxicity of Synthetic Chemical (XVIII)-in vitro Mouse Lymphoma Assay and in vivo Supravital Micronucleus Assay with Butylated Hydroxytoluene (BHT)

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.172-176
    • /
    • 2007
  • Butylated hydroxytoluene (BHT) is widely used antioxidant food additives. It has been extensively studied for potential toxicities. BHT appears adverse effects in liver and thyroid. In this study, we evaluated the genetic toxicity of BHT with more advanced methods, in vitro mouse lymphoma assay $tk^{+/-}$ gene assay (MLA) and in vivo mouse supravital micronucleus (MN) assay. BHT did not appear the significantly results in the absence and presence of metabolic activation system with MLA. Also, in vivo testing of BHT yielded negative results with supravital MN assay. These results suggest that BHT itself was not generally considered genotoxic.