• 제목/요약/키워드: In vitro glycosylation

검색결과 41건 처리시간 0.025초

Biosynthesis of Novel Glucosides Geldanamycin Analogs by Enzymatic Synthesis

  • Huo, Qiang;Li, Hong-Mei;Lee, Jae Kyoung;Li, Jing;Ma, Tao;Zhang, Xinyu;Dai, Yiqun;Hong, Young-Soo;Wu, Cheng-Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.56-60
    • /
    • 2016
  • Two new glucosides (1 and 2) of geldanamycin (GA) analogs were obtained from in vitro glycosylation by UDP-glycosyltransferase (YjiC). Based on spectroscopic (HR-ESI-MS, 1D, and 2D-NMR) analyses, the glucosides were elucidated as 4,5-dihydro-7-O-descarbamoyl-7-hydroxyl GA-7-O-β-D-glucoside (1) and ACDL3172-18-O-β-D-glucoside (2). Furthermore, the water solubility of compounds 1 and 2 was about 215.2 and 90.7 times higher respectively, than that of the substrates. Among compounds 1-4, only 3 showed weak antiproliferative activity against four human tumor cell lines: MDA-MB-231, SMMC7721, HepG2, and SW480 (IC50: 13.6, 15.1, 31.8, and 22.7 μM, respectively).

당뇨 처방에 근거한 생약재의 α-Glucosidase 활성 저해 효과 및 이를 활용한 미백 소재 평가법 (Effect of Medicinal Herb Prepared through Traditional Antidiabetic Prescription on α-Glucosidase Activity and Evaluation Method for Anti-Melanogenesis Agents Using α-Glucosidase Activity)

  • 김미진;임경란;윤경섭
    • 한국식품영양과학회지
    • /
    • 제44권7호
    • /
    • pp.993-999
    • /
    • 2015
  • 본 연구에서는 선정한 생약재 및 복합처방단의 ${\alpha}$-glucosidase 저해 활성을 알아보았으며, 이 방법이 미백 소재 스크리닝을 위한 유용한 평가법인지를 알아보았다. 한의학과 민간에서 당뇨의 개선 및 치료 효과가 우수하다고 알려진 생약재 및 처방 중 죽력, 귀전우, 적양, 연자육, 마인, 청심연자음의 ${\alpha}$-glucosidase 활성 저해 효과는 식후 혈당조절제인 acarbose와 비교하여 볼 때 우수한 효과를 나타내었다. 미백 효과가 알려진 연자육을 함유한 청심연자음 hydrolyzed EtOAc layer는 $100{\mu}g/mL$ 농도에서 약 50% 멜라닌 생성 저해 효과를 보였다. 또한 청심연자음 hydrolyzed EtOAc layer는 ${\alpha}$-glucosidase 활성 저해 효과가 우수하였으나 mushroom tyrosinase 활성 저해 효과는 나타나지 않았다. 이로써 청심연자음 hydrolyzed EtOAc layer는 ${\alpha}$-glucosidase 활성을 저해시켜 tyrosinase의 glycosylation을 저해함으로써 멜라닌 생성 억제 효과가 나타나는 것으로 생각된다. 이상의 결과로 볼 때 ${\alpha}$-glucosidase 활성 억제 효과가 있으면서 당뇨병에 효과가 있는 생약재들은 N-linked glycoprotein인 tyrosinase의 glycosylation을 저해하여 tyrosinase의 세포 내 이동이나 활성을 억제함으로써 멜라닌 생성을 억제할 것으로 사료되며, 본 연구에서 선정된 생약재들은 당뇨병 치료를 위한 목적뿐만 아니라 화장품에서 새로운 미백 소재로서의 활용가치가 있을 것으로 판단된다. 또한 미백에 효과가 있는 소재 스크리닝을 위해 현재 널리 사용되고 있는 mushroom tyrosinase 활성 저해 효과와 다른 접근 방법으로써 ${\alpha}$-glucosidase 활성 측정 방법도 하나의 평가법으로 유용할 것으로 생각된다.

맥문동 종실 안토시아닌 분획물의 멜라닌 생성 억제 및 미백 효과 (Antimelanogenic Effect and Whitening of Anthocyanin Rich Fraction from Seeds of Liriope platyphylla)

  • 정명근;황영선;김기쁨;안경근;심훈섭;홍승범;최재후;유창연;정일민;김승현;임정대
    • 한국약용작물학회지
    • /
    • 제21권5호
    • /
    • pp.361-371
    • /
    • 2013
  • This study was performed to determine the antimelanogenic effect and tyrosinase inhibitory activities of anthocyanin rich fraction (AN-SLP) from Liriope platyphylla Wang et Tang seeds. Anthocyanins isolated from L. platyphylla seeds revealed the presence of four major anthocyanin components, which were tentatively identified as delphinidin-3-Oglucoside, delphinidin-3-O-rutinoside, petunidin-3-O-rutinoside, and malvidin-3-O-rutinoside using semipreparative HPLC, $^1H$-NMR, $^{13}C$ NMR, FAB-MS and LC/ES-MS. The inhibitory effect of AN-SLP on tyrosinase activity was studied using in vitro (against mushroom tyrosinase) and ex vivo (against B16 melanoma cell tyrosinase) models. Cellular tyrosinase activity was decreased by AN-SLP treatment in B 16 melanoma cells through dose dependent manner, but AN-SLP did not inhibit mushroom tyrosinase and L-DOPA oxidation directly. AN-SLP showed melanin inhibition by 53.2% at 50 ${\mu}g/m{\ell}$ which was 0.7 times more efficient than the antimelanogenic effect of commercial arbutin and kojic acid (36.5%) also did not show cell toxicity. Additionally, AN-SLP inhibited the activity of ${\alpha}$-glucosidase and the glycosylation of tyrosinase in melanoma cell. The resulting unsaturated glycosylation of tyrosinase makes it unstable and disturb correct transportation. From theses results, we conclude that AN-SLP could be used as anti-melanogenic agent for skin whitening.

Analysis of the transcripts encoding for antigenic proteins of bovine gammaherpesvirus 4

  • Romeo, Florencia;Spetter, Maximiliano J.;Moran, Pedro;Pereyra, Susana;Odeon, Anselmo;Perez, Sandra E.;Verna, Andrea E.
    • Journal of Veterinary Science
    • /
    • 제21권1호
    • /
    • pp.5.1-5.12
    • /
    • 2020
  • The major glycoproteins of bovine gammaherpesvirus 4 (BoHV-4) are gB, gH, gM, gL, and gp180 with gB, gH, and gp180 being the most glycosylated. These glycoproteins participate in cell binding while some act as neutralization targets. Glycosylation of these envelope proteins may be involved in virion protection against neutralization by antibodies. In infected cattle, BoHV-4 induces an immune response characterized by low neutralizing antibody levels or an absence of such antibodies. Therefore, virus seroneutralization in vitro cannot always be easily demonstrated. The aim of this study was to evaluate the neutralizing capacity of 2 Argentine BoHV-4 strains and to associate those findings with the gene expression profiles of the major envelope glycoproteins. Expression of genes coding for the envelope glycoproteins occurred earlier in cells infected with isolate 10/154 than in cells infected with strain 07/435, demonstrating a distinct difference between the strains. Differences in serological response can be attributed to differences in the expression of antigenic proteins or to post-translational modifications that mask neutralizing epitopes. Strain 07/435 induced significantly high titers of neutralizing antibodies in several animal species in addition to bovines. The most relevant serological differences were observed in adult animals. This is the first comprehensive analysis of the expression kinetics of genes coding for BoHV-4 glycoproteins in 2 Argentine strains (genotypes 1 and 2). The results further elucidate the BoHV-4 life cycle and may also help determine the genetic variability of the strains circulating in Argentina.

Development and Characterization of Hyperglycosylated Recombinant Human Erythropoietin (HGEPO)

  • JarGal, Naidansuren;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • 제33권2호
    • /
    • pp.77-83
    • /
    • 2009
  • Erythropoietin (EPO), a glycoprotein hormone produced from primarily cells of the peritubular capillary endothelium of the kidney, is responsible for the regulation of red blood cell production. We have been investigating the roles of glycosylation site added in the biosynthesis and function of recombinant protein. We constructed three EPO mutants ($\Delta$69, $\Delta$105 and $\Delta$69,105), containing an additional oligosaccharide chains. EPOWT and EPO$\Delta$69 were effectively expressed in transient and stably transfected CHO-K1 cell lines. But, it wasn't detected any protein in the culture medium of EPO$\Delta$105 and EPO$\Delta$69,105 mutants. The growth and differentiation of EPO-dependent human leukemic cell line (F36E) were used to measure the cytokine dependency and in vitro bioactivity of rec-hEPO. MTT assay values were increased by survival of F36E cells at 24h. To analysis biological activity in vivo, two groups of ICR-mice (7 weeks old) were injected subcutaneously with 10 IU per mice of rec-hEPO molecules on days 0 and 2. Red blood cell and hematocrit values were measured on 6 days after the first injection. The hematocrit values were remarkably increased in all treatment groups. The pharmacokinetic analysis was also affected in the mice injected with rec-hEPO molecules 2.5 IU by tail intravenous. Protein samples were detected by Western blotting. An EPO$\Delta$69 protein migrated as a broad band with an average apparent molecular and detected slightly high band. Enzymatic N-deglycosylation resulted in narrow band and was the same molecular size. The biological activity of EPO$\Delta$69 was enhanced to compare with wt-hEPO. The half-life was longer than wt-hEPO. The results suggest that hyperglycosyalted recombinant human erythropoietin (EPO$\Delta$69) may have important biological and therapeutic good points.

Sequencing and Baculovirus-Based Expression of the Glycoprotein B2 Gene of HSV-2 (G)

  • Uh, Hong-Sun;Park, Jong-Kuk;Kang, Hyun;Kim, Soo-Young;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.482-490
    • /
    • 2001
  • The gene for glycoprotein B (gB2) of HSV-2-strain G was subcloned, sequenced, recombinated into the lacZ-HcNPV, expressed in insect cells, and compared with the homologous gene of other HSV-2 strains. The ORF of the gB2 gene was 2,715 bp. The overall nucleotide sequence homology of te gB2 gene compared ith that of the two previously reported HSV-2 strains appeared to be over 98%. A recombinant virus named Baculo-gB2 protein in insect cells. The recombination was confirmed by a PCR and the expression was demonstrated by radio immunoprecipitation. Insect cells infected with the Baculo-gB2 virus synthesized and processed gB2 with approximately 120 kDa in the cells, and then secreted it into the culture media, where it reacted with a nomoclonal antibody to gB2. The gB2 polypeptide contained two main hydrophobic regions (a signal sequence from 1 to 23 amino acid residues, and a membrane anchor sequence from aa 745 to 798), eight N-glycosylation sites evenly distributed, and was rich in alanine (11.2%). Antibodies to this recombinant protein that were raised in mice recognized the viral gB2 and neutralized the infectivity of the HSV-2 in vitro. There results show that the gB2 protein was successfully porduced in insect cells and could be used to raise a protective neutralizing antibody. Accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

Rare ginsenoside Ia synthesized from F1 by cloning and overexpression of the UDP-glycosyltransferase gene from Bacillus subtilis: synthesis, characterization, and in vitro melanogenesis inhibition activity in BL6B16 cells

  • Wang, Dan-Dan;Jin, Yan;Wang, Chao;Kim, Yeon-Ju;Perez, Zuly Elizabeth Jimenez;Baek, Nam In;Mathiyalagan, Ramya;Markus, Josua;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.42-49
    • /
    • 2018
  • Background: Ginsenoside F1 has been described to possess skin-whitening effects on humans. We aimed to synthesize a new ginsenoside derivative from F1 and investigate its cytotoxicity and melanogenesis inhibitory activity in B16BL6 cells using recombinant glycosyltransferase enzyme. Glycosylation has the advantage of synthesizing rare chemical compounds from common compounds with great ease. Methods: UDP-glycosyltransferase (BSGT1) gene from Bacillus subtilis was selected for cloning. The recombinant glycosyltransferase enzyme was purified, characterized, and utilized to enzymatically transform F1 into its derivative. The new product was characterized by NMR techniques and evaluated by MTT, melanin count, and tyrosinase inhibition assay. Results: The new derivative was identified as (20S)-$3{\beta},6{\alpha},12{\beta}$,20-tetrahydroxydammar-24-ene-20-O-${\beta}$-D-glucopyranosyl-3-O-${\beta}$-D-glucopyranoside(ginsenoside Ia), which possesses an additional glucose linked into the C-3 position of substrate F1. Ia had been previously reported; however, no in vitro biological activity was further examined. This study focused on the mass production of arduous ginsenoside Ia from accessible F1 and its inhibitory effect of melanogenesis in B16BL6 cells. Ia showed greater inhibition of melanin and tyrosinase at $100{\mu}mol/L$ than F1 and arbutin. These results suggested that Ia decreased cellular melanin synthesis in B16BL6 cells through downregulation of tyrosinase activity. Conclusion: To our knowledge, this is the first study to report on the mass production of rare ginsenoside Ia from F1 using recombinant UDP-glycosyltransferase isolated from B. subtillis and its superior melanogenesis inhibitory activity in B16BL6 cells as compared to its precursor. In brief, ginsenoside Ia can be applied for further study in cosmetics.

Stabilization of Rat Serum Proteins Following Oral Administration of Fish Oil

  • Saso, Luciano;Valentini, Giovanni;Mattei, Eleonora;Panzironi, Claudio;Casini, Maria Luisa;Grippa, Eleonora;Silvestrini, Bruno
    • Archives of Pharmacal Research
    • /
    • 제22권5호
    • /
    • pp.485-490
    • /
    • 1999
  • The mechanism of action of fish oil (FO), currently used in different chronic inflammatory conditions such as rheumatoid arthritis (RA), is not completely understood, although it is thought that it could alter the metabolism of endogenous autacoids. In addition, we hypothesized that the known capability of fatty acids (FA) of stabilizing serum albumin and perhaps other proteins, may be of pharmacological relevance considering that it is shared by other anti-rheumatic agents (e.g. nonsteroidal antiinflammatory drugs). Thus, we studied the effect of oral administration of FO and corn oil (CO), a vegetable oil with a different composition, on the stability of rat serum proteins, evaluated buy a classical in vitro method based on heat-induced protein denaturation. FO, and, to a lower extent, CO inhibited heat-induced denaturation of rat serum (RS): based on the inhibitory activity (EC50) of the major fatty acids against heat-induced denaturation of RS in vitro, it was possible to speculate the in vivo effects of palmitic acid (C16:0) and eicosapentaenoic acid (EPA, C20:5, n-3) may be more relevant than that of linolenic acid (C18:2). To better investigate this phenomenon, we extracted albumin from the serum of animals treated or not with FO with a one-step affinity chromatography technique, obtaining high purity rat serum albumin preparations (RSA-CTRL and RSA-FO), as judged by SDS-PAGE with Coomassie blue staining. When these RSA preparations were heated at $70^{\circ}C$ for 30 min, it was noted that RSA-FO was much more stable than RSA-CTRL, presumably due to higher number of long chain fatty acids (FA) such as palmitic acid or EPA. In conclusion, we provided evidences that oral administration of FO in the rat stabilizes serum albumin, due to an increase in the number of protein bound long chain fatty acids (e.g. palitic acid and EPA). We speculate that the stabilization of serum albumin and perhaps other proteins could prevent changes of antigenicity due to protein denaturation and glycosylation, which may trigger pathological autoimmune responses, suggesting that this action may be involved in the mode of action of FO in RA and other chronic inflammatory diseases.

  • PDF

ppGalNAc T1 as a Potential Novel Marker for Human Bladder Cancer

  • Ding, Ming-Xia;Wang, Hai-Feng;Wang, Jian-Song;Zhan, Hui;Zuo, Yi-Gang;Yang, De-Lin;Liu, Jing-Yu;Wang, Wei;Ke, Chang-Xing;Yan, Ru-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5653-5657
    • /
    • 2012
  • Objectives: To investigate the effect of glycopeptide-preferring polypeptide GalNAc transferase 1 (ppGalNAc T1 ) targeted RNA interference (RNAi) on the growth and migration of human bladder carcinoma EJ cells in vitro and in vivo. Methods: DNA microarray assays were performed to determine ppGalNAc Ts(ppGalNAc T1-9) expression in human bladder cancer and normal bladder tissues. We transfected the EJ bladder cancer cell line with well-designed ppGalNAc T1 siRNA. Boyden chamber and Wound healing assays were used to investigate changes of shppGalNAc T1-EJ cell migration. Proliferation of shppGalNAc T1-EJ cells in vitro was assessed using [3H]-thymidine incorporation assay and soft agar colony formation assays. Subcutaneous bladder tumors in BALB/c nude mice were induced by inoculation of shppGalNAc T1-EJ cells and after inoculation diameters of tumors were measured every 5 days to determine gross tumor volumes. Results: ppGalNAc T1 mRNA in bladder cancer tissues was 11.2-fold higher than in normal bladder tissues. When ppGalNAc T1 expression in EJ cells was knocked down through transfection by pSUPER-shppGalNAc T1 vector, markedly reduced incorporation of [3H]-thymidine into DNA of EJ cells was observed at all time points compared with the empty vector transfected control cells. However, ppGalNAc T1 knockdown did not significantly inhibited cell migration (only 12.3%). Silenced ppGalNAc T1 expression significantly inhibited subcutaneous tumor growth compared with the control groups injected with empty vector transfected control cells. At the end of observation course (40 days), the inhibitory rate of cancerous growth for ppGalNAc T1 knockdown was 52.5%. Conclusion: ppGalNAc T1 might be a potential novel marker for human bladder cancer. Although ppGalNAc T1 knockdown caused no remarkable change in cell migration, silenced expression significantly inhibited proliferation and tumor growth of the bladder cancer EJ cell line.

Effect of IRES Controlled Reporter Gene on Screening and Production of Recombinant Human EPO Proteins from Cultured CHO Cells

  • Lee Hyun Gi;Park Jin-Ki;Kim Sung-Woo;Ko Eun-Mi;Kim Byoung-Ju;Jo Su-Jin;Byun Sung-June;Yang Boh-Suk;Chang Won-Kyong;Lee Hoon-Taek;Lee Poong-Yeon
    • Reproductive and Developmental Biology
    • /
    • 제30권2호
    • /
    • pp.81-85
    • /
    • 2006
  • This study was conducted to examine the effect of IRES controlled reporter gene on screening and production of recombinant human erythropoietin (EPO) proteins from cultured CHO cells. The cDNA was cloned for EPO from human liver cDNA Using site-directed mutagenesis, we generated recombinant human EPO (rhEPO) with two additional N-glycosylations (Novel erythropoiesis-stimulating protein: NESP). Wild type hEPO and NESP were cloned into expression vectors with GFP reporter gene under regulatory control of CMV promoter and IRES so that the vectors could express both rhEPO and GFP. The expression vectors were transfected to cultured CHO-K1 cells. Under microscopy, expression of GFP was visible. Using supernatant of the culture, ELISA assay, immunocytochemistry and in vitro assay using EPO dependant cell line were performed to estimate biological activity to compare the production characteristics (secretion levels, etc.) between rhEPO and NESP. The activity of NESP protein, obtained by mutagenesis, was described and compared with its rhEPO counterpart produced under same conditions. Although NESP had less secretion level in CHO cell line, the biological activity of NESP was greater than that of rhEPO. These results are consistent with previous researches. We also demonstrated that rhEPO and GFP proteins expressed simultaneously from transfected CHO cell line. Therefore we conclude that use of GFP reporter gene under IRES control could be used to screen and produce rhEPO in cultured CHO cells.