• Title/Summary/Keyword: In vitro degradation

Search Result 347, Processing Time 0.025 seconds

Metabolisable Energy, In situ Rumen Degradation and In vitro Fermentation Characteristics of Linted Cottonseed Hulls, Delinted Cottonseed Hulls and Cottonseed Linter Residue

  • Bo, Y.K.;Yang, H.J.;Wang, W.X.;Liu, H.;Wang, G.Q.;Yu, X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.240-247
    • /
    • 2012
  • Dietary supplementation with conventional linted cottonseed hulls (LCSH) is a common practice in livestock production all over the world. However, supplementation with mechanically delinted cottonseed hulls (DCSH) and cottonseed linter residue (CLR) is uncommon. Cottonseed by-products, including LCSH, DCSH and CLR, were assessed by chemical analysis, an in situ nylon bag technique, an in vitro cumulative gas production technique and in vitro enzyme procedure. The crude protein (CP) content of CLR (302 g/kg dry matter (DM)) was approximately 3 times that of LCSH and 5 times that of DCSH. The crude fat content was approximately 3 times higher in CLR (269 g/kg DM) than in LCSH and 4 times higher than in DCSH. Neutral detergent fibre (311 g/kg DM) and acid detergent fibre (243 g/kg DM) contents of CLR were less than half those of DCSH or LCSH. Metabolisable energy, estimated by in vitro gas production and chemical analyses, ranked as follows: CLR (12.69 kJ/kg DM)>LCSH (7.32 kJ/kg DM)>DCSH (5.82 kJ/kg DM). The in situ degradation trial showed that the highest values of effective degradability of DM and CP were obtained for CLR (p<0.05). The in vitro disappearance of ruminal DM ranked as follows: CLR>LCSH>DCSH (p<0.05). The lowest digestibility was observed for DCSH with a two-step in vitro digestion procedure (p<0.05). The potential gas production in the batch cultures did not differ for any of the three cottonseed by-product feeds. The highest concentration of total volatile fatty acids was observed in CLR after a 72 h incubation (p<0.05). The molar portions of methane were similar between all three treatments, with an average gas production of 22% (molar). The CLR contained a higher level of CP than did LCSH and DCSH, and CLR fermentation produced more propionate. The DCSH and LCSH had more NDF and ADF, which fermented into greater amounts of acetate.

Synthesis of New Biodegradable Crosslinked Polyesters for Biomedical Applcations and Their In-Vitro Degradation

  • 한양규;강태곤;주충열;김응렬;임승순
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.680-685
    • /
    • 1998
  • Two kinds of new aliphatic diols were synthesized by the ring-opening reaction of lactide and glycolide with 1,4-butanediol, a difunctional initiator, in the presence of stannous octoate. The resulting aliphatic diols were melt-polymerized with D-tartaric acid at 150 ℃ to produce new crosslinkable polyesters. They were reacted with hexamethylene diisocyanate in THF at 65 ℃ in a teflon mold for 24 h to prepare sequentially ordered crosslinked polyesters (BD/LT/GL/D-tartarate). Degradation of the prepared yellow crosslinked films was carried out in a buffer solution in order to examine the effect of time, pH, temperature and crosslinking degree on their degradation rate and mechanism. The rate of degradation increased with an increase in pH and temperature, but it decreased with increasing degree of crosslinkage incorporated into the crosslinked polyesters. We also found that the crosslinked polymers were converted into the acidic compounds such as lactic, glycolic, and D-tartaric acids during the degradation.

In Sacco Evaluation of Rumen Protein Degradation Characteristics and In vitro Enzyme Digestibility of Dry Roasted Whole Lupin Seeds (Lupinus albus)

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.358-365
    • /
    • 1999
  • The effects of dry roasting whole lupin seeds (lupinus albus, WLS) at 110, 130 or $150{^{\circ}C}$ for 15, 30 or 45 minutes on the in sacco rumen degradation characteristics, optimal heating conditions of time and temperature and in vitro enzyme digestibility were determined. Ruminant degradation characteristics (RDC) of crude protein (CP) of WLS were determined by in sacco technique in dairy cows. Measure ROC were soluble (S), undegradable (U), potentially degradable (D) fractions, lag time (TO) and rate of degradation (Kd) of insoluble but degradable fraction. Based on measured ROC, percentage bypass CP (%BCP) and bypass CP (BCP in g/kg, DM) were calculated. Degradability of CP was significantly reduced by dry roasting (p<0.001). The interaction of dry roasting temperature and time had significant effects on D (p<0.05), Kd (p<0.01), U (p<0.01), %BCP (p<0.001) and BCP (p<0.001) but not on S (p=0.923>0.05). With increasing time and temperature, S, D, Kd and U varied from 31.8%, 67.4%, 10.3%/h and 0.8% in the raw WLS (RWLS) to 27.1 %, 35.8%, 3.6%/h, 38.4% in $150{^{\circ}C}/45\;min$, respectively. All these effects resulted in increasing %BCP from 25.9 in RWLS to 61.0% in the $150{^{\circ}C}/45\;min$. Therefore BCP increased form 111.2 to 261.2 g/kg DM, respectively. Both %BCP and BCP at $150{^{\circ}C}/45\;min$ increased nearly 2.5 times over the RWLS. The effects of dry roasting on %BCP and BCP seemed to be linear up to the highest value tested. Although ROC had been altered by dry roasting, the In vitro perpsin-cellulase digestibility was generally unchanged. It was concluded that dry roasting was effective in shifting CP degradation from rumen to the lower gastrointestinal tract to potential reduce unnecessary N loss in the rumen. It might be of great value in successfully synchronizing the rhythms of release of nitrogen and energy in the rumen, thus achieving a more efficient fermentation of diets with high proportions of lignocellulosic resources. To determine the optimal dry roasting conditions, the digestibility of each treatment in the cows will be measured in the next trial using mobile bags technique.

Effects of Tropical High Tannin Non Legume and Low Tannin Legume Browse Mixtures on Fermentation Parameters and Methanogenesis Using Gas Production Technique

  • Seresinhe, Thakshala;Madushika, S.A.C.;Seresinhe, Y.;La, P.K.;Orskov, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1404-1410
    • /
    • 2012
  • In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima${\times}$Leucaena leucocephala (LL) (Trt 1), C. integerrima${\times}$Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana${\times}$LL (Trt 3), A. lindeliyana${\times}$GS (Trt 4), Ceiba perntandra${\times}$LL (Trt 5), C. perntandra${\times}$GS (Trt 6), Artocarpus heterophyllus${\times}$LL (Trt 7), A. heterophyllus${\times}$GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (p<0.05) were observed in in vitro gas production (IGVP) within treatments over a 48 h period dominated by C. perntandra${\times}$G. sepium (Trt 6). The net gas production (p<0.05) was also high with Trt6 followed by A. heterophyllus${\times}$L. leucocephala (Trt 7) and A. heterophyllus${\times}$G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus${\times}$G. sepium (Trt 8) mixture which may be attributed with it's highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (p<0.05) was found in C. perntandra${\times}$G. sepium (Trt 6) followed by Artocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental substitution of legume forage increased gas production parameters, NH3-N, IVDMD and microbial population in the fermentation liquid. Methane production was not significantly affected by the presence of CT or different levels of CP in forage mixtures. Among non legumes, Ceiba perntandra and Artocarpus heterophyllus performed better in mixture with L. leucocephala and G. sepium.

New Aliphatic Diol/Dicarboxylic Acid Based Biodegradable Polyesters and Their in-vitro Degradations (새로운 지방족 디올/디카복실산계 생분해성 폴리에스테르 및 가수분해 특성)

  • Kang Tae-Gon;Han Yang-Kyoo
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.314-319
    • /
    • 2005
  • Four kinds of new aliphatic diols were synthesized by the ring opening reaction of glycolide with 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol, or 1,4-cyclohexanedimethanol, a difunctional initiator, in the presence of stannous octoate catalyst. The resulting diols were melt-polymerized with succinic acid, adipic acid, or suberic acid at 170, 190, or $220^{circ}C$ to produce new sequentially ordered aliphatic polyesters and their corresponding polyesters with random structure. Their glass transition temperatures ($T_g$) ranged from -40 to $30^{circ}C$, The sequentially ordered polyesters prepared at $170^{cir}C$ had higher $T_g$ of 5 to $10^{circ}$ than the polyesters with rand()m structure produced at higher temperature. From in-vitro degradation test the sequentially ordered polyesters was shower in the rate of hydrolysis in a buffer solution than the polymers with random molecular structure.

A Comparative study for single-shot immunization of diphtheria toxoid with combined PLGA microspheres.

  • Yoon, Mi-Kyeung;Lee, Jung-Min;Kim, Hee-Kyu;Choi, Young-Wook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.416.1-416.1
    • /
    • 2002
  • Biodegradable PLGA microspheres(MS) have been widely studied for delivering antigens because PLGA has the characteristics of various degradation rate. In general. since MS have shown potential for single-dose vaccines. the degradation rate of PLGA is determined by their molecular weight. polymer composition, etc. We studied the influences of molecular weight of PLGA. polymer composition and surfactant on in vitro release and in vivo effects. (omitted)

  • PDF

Comparative analysis of silage fermentation and in vitro digestibility of tropical grass prepared with Acremonium and Tricoderma species producing cellulases

  • Khota, Waroon;Pholsen, Suradej;Higgs, David;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1913-1922
    • /
    • 2018
  • Objective: To find out ways of improving fermentation quality of silage, the comparative analysis of fermentation characteristics and in vitro digestibility of tropical grasses silage applied with cellulases produced from Acremonium or Tricoderma species were studied in Thailand. Methods: Fresh and wilted Guinea grass and Napier grass silages were prepared with cellulases from Acremonium (AC) or Trichoderma (TC) at 0.0025%, 0.005%, and 0.01% on a fresh matter (FM), and their fermentation quality, chemical composition and in vitro digestibility were analyzed. Results: All silages of fresh Napier grass were good quality with lower pH, butyric acid, and ammonia nitrogen, but higher lactic acid content than wilted Napier grass and Guinea grass silage. Silages treated with AC 0.01% had the best result in terms of fermentation quality. They also had higher in vitro dry matter digestibility and in vitro organic matter digestibility at 6 and 48 h after incubation than other silages. Silages treated with lower levels at 0.005% or 0.0025% of AC and all levels of TC did not improve silage fermentation. Conclusion: The AC could improve silage fermentation and in vitro degradation of Guinea grass and Napier grass silages, and the suitable addition ration is 0.01% (73.5 U) of FM for tropical silage preparation.

Inhibitory Effect of Astragali Radix on Matrix Degradation in Human Articular Cartilage

  • CHOI SOOIM;PARK SO-RA;HEO TAE-RYEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1258-1266
    • /
    • 2005
  • The present study was carried out in order to assess the protective effects of calycosin-7-O-$\beta$-D-glucopyranoside, isolated from Astragali radix (AR), on hyaluronidase (HAase) and the recombinant human interleukin-$1\beta$ (IL-$1\beta$)-induced matrix degradation in human articular cartilage and chondrocytes. We isolated the active component from the n-butanol soluble fraction of AR (ARBu) as the HAase inhibitor and structurally identified as calycosin-7-O-$\beta$-D-glucopyranoside by LC-MS, IR, ${1}^H$ NMR, and ${13}^C$ NMR analyses. The $IC_{50}$ of this component on HAase was found to be 3.7 mg/ml by in vitro agarose plate assay. The protective effect of ARBu on the matrix gene expression of immortalized chondrocyte cell line C28/I2 treated with HAase was investigated using a reverse transcription polymerase chain reaction (RT-PCR), and its effect on HAase and IL-$1\beta$-induced matrix degradation in human articular cartilage was determined by a staining method and calculating the amount of degraded glycosaminoglycan (GAG) from the cultured media. Pretreatment with calycosin-7-O-$\beta$-D-glucopyranoside effectively protected human chondrocytes and articular cartilage from matrix degradation. Therefore, calycosin-7-O-$\beta$-D-glucopyranoside from AR appears to be a potential natural ant-inflammatory or antii-osteoarthritis agent and can be effectively used to protect from proteoglycan (PG) degradation.

Effects of Dietary Supplementation with Hainanmycin on Protein Degradation and Populations of Ammonia-producing Bacteria In vitro

  • Wang, Z.B.;Xin, H.S.;Wang, M.J.;Li, Z.Y.;Qu, Y.L.;Miao, S.J.;Zhang, Y.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.668-674
    • /
    • 2013
  • An in vitro fermentation was conducted to determine the effects of hainanmycin on protein degradation and populations of ammonia-producing bacteria. The substrates (DM basis) for in vitro fermentation consisted of alfalfa hay (31.7%), Chinese wild rye grass hay (28.3%), ground corn grain (24.5%), soybean meal (15.5%) with a forage: concentrate of 60:40. Treatments were the control (no additive) and hainanmycin supplemented at 0.1 (H0.1), 1 (H1), 10 (H10), and 100 mg/kg (H100) of the substrates. After 24 h of fermentation, the highest addition level of hainanmycin decreased total VFA concentration and increased the final pH. The high addition level of hainanmycin (H1, H10, and H100) reduced (p<0.05) branched-chain VFA concentration, the molar proportion of acetate and butyrate, and ratio of acetate to propionate; and increased the molar proportion of propionate, except that for H1 the in molar proportion of acetate and isobutyrate was not changed (p>0.05). After 24 h of fermentation, H10 and H100 increased (p<0.05) concentrations of peptide nitrogen and AA nitrogen and proteinase activity, and decreased (p<0.05) $NH_3$-N concentration and deaminase activity compared with control. Peptidase activitives were not affected by hainanmycin. Hainanmycin supplementation only inhibited the growth of Butyrivibrio fibrisolvens, which is one of the species of low deaminative activity. Hainanmycin supplementation also decreased (p<0.05) relative population sizes of hyper-ammonia-producing species, except for H0.1 on Clostridium aminophilum. It was concluded that dietary supplementation with hainanmycin could improve ruminal fermentation and modify protein degradation by changing population size of ammonia-producing bacteria in vitro; and the addition level of 10 mg/kg appeared to achieve the best results.

Characterization of the Transglycosylation Reaction of 4-α-Glucanotransferase (MalQ) and Its Role in Glycogen Breakdown in Escherichia coli

  • Nguyen, Dang Hai Dang;Park, Sung-Hoon;Tran, Phuong Lan;Kim, Jung-Wan;Le, Quang Tri;Boos, Winfried;Park, Jong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.357-366
    • /
    • 2019
  • We first confirmed the involvement of MalQ (4-${\alpha}$-glucanotransferase) in Escherichia coli glycogen breakdown by both in vitro and in vivo assays. In vivo tests of the knock-out mutant, ${\Delta}malQ$, showed that glycogen slowly decreased after the stationary phase compared to the wild-type strain, indicating the involvement of MalQ in glycogen degradation. In vitro assays incubated glycogen-mimic substrate, branched cyclodextrin (maltotetraosyl-${\beta}$-CD: G4-${\beta}$-CD) and glycogen phosphorylase (GlgP)-limit dextrin with a set of variable combinations of E. coli enzymes, including GlgX (debranching enzyme), MalP (maltodextrin phosphorylase), GlgP and MalQ. In the absence of GlgP, the reaction of MalP, GlgX and MalQ on substrates produced glucose-1-P (glc-1-P) 3-fold faster than without MalQ. The results revealed that MalQ led to disproportionate G4 released from GlgP-limit dextrin to another acceptor, G4, which is phosphorylated by MalP. In contrast, in the absence of MalP, the reaction of GlgX, GlgP and MalQ resulted in a 1.6-fold increased production of glc-1-P than without MalQ. The result indicated that the G4-branch chains of GlgP-limit dextrin are released by GlgX hydrolysis, and then MalQ transfers the resultant G4 either to another branch chain or another G4 that can immediately be phosphorylated into glc-1-P by GlgP. Thus, we propose a model of two possible MalQ-involved pathways in glycogen degradation. The operon structure of MalP-defecting enterobacteria strongly supports the involvement of MalQ and GlgP as alternative pathways in glycogen degradation.