• Title/Summary/Keyword: In vitro cytotoxicity

Search Result 1,115, Processing Time 0.025 seconds

Inhibition of mouse SP2/0 myeloma cell growth by the B7-H4 protein vaccine

  • Mu, Nan;Liu, Nannan;Hao, Qiang;Xu, Yujin;Li, Jialin;Li, Weina;Wu, Shouzhen;Zhang, Cun;Su, Haichuan
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.399-404
    • /
    • 2014
  • B7-H4 is a member of B7 family of co-inhibitory molecules and B7-H4 protein is found to be overexpressed in many human cancers and which is usually associated with poor survival. In this study, we developed a therapeutic vaccine made from a fusion protein composed of a tetanus toxoid (TT) T-helper cell epitope and human B7-H4IgV domain (TT-rhB7-H4IgV). We investigated the anti-tumor effect of the TT-rhB7-H4IgV vaccine in BALB/c mice and SP2/0 myeloma growth was significantly suppressed in mice. The TT-rhB7-H4IgV vaccine induced high-titer specific antibodies in mice. Further, the antibodies induced by TT-rhB7-H4IgV vaccine were capable of depleting SP2/0 cells through complement-dependent cytotoxicity (CDC) in vitro. On the other hand, the poor cellular immune response was irrelevant to the therapeutic efficacy. These results indicate that the recombinant TT-rhB7-H4IgV vaccine might be a useful candidate of immunotherapy for the treatment of some tumors associated with abnormal expression of B7-H4.

Induction of Apoptosis by Combination Treatment with Luteolin and TRAIL in T24 Human Bladder Cancer Cells (T24 방광암세포에서 Luteolin과 TRAIL의 복합 처리에 따른 Apoptosis 유도)

  • Park, Hyun Soo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1363-1369
    • /
    • 2013
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis by targeting cancer cells. However, some cancer cells are resistant to TRAIL-induced cytotoxicity. One method of overcoming TRAIL resistance is combination treatment with reagents to sensitize cells to TRAIL. Luteolin, a flavonoid, has been shown to have anti-cancer effects by inducing apoptosis and cell cycle arrest in various cancer cell lines in vitro. In this study, we investigated the effects of combination treatment with non-toxic concentration of TRAIL and luteolin in T24 human bladder cancer cells. Combined treatment with luteolin and TRAIL significantly inhibits cell proliferation via activation of caspases by inducing Bid truncation, up-regulation of Bax and down-regulation of X-linked inhibitor of apoptosis protein (XIAP). However, the apoptotic effects of combination treatment with luteolin and TRAIL were significantly inhibited by specific caspases inhibitors. Taken together, these results indicate that combination treatment with TRAIL and luteolin can induce apoptosis in TRAIL-resistant cancer cells through down-regulation of XIAP and modulation of tBid and Bax expression.

Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor ${\beta}$-mediated phosphatidylinositol-3 kinase/Akt signaling

  • Nguyen, Cuong Thach;Luong, Truc Thanh;Kim, Gyu-Lee;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • Background: Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-${\beta}$ signaling. Methods: Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to $H_2O_2$. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined byWestern blot analysis. The roles of ER-${\beta}$, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results: Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-${\beta}$, PI3K, and p-Akt expression. Conversely, ER-${\beta}$ inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion: Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-${\beta}$ expression.

Anti-Inflammatory Effect of Chung-Dae in LPS-Treated RAW 264.7 Cells (LPS로 유도된 RAW 264.7 대식세포에서 청대의 항염증효과)

  • Jang, Sou Jou;Kang, Soon Ah
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.2
    • /
    • pp.116-126
    • /
    • 2022
  • The purpose of this study was to analyze the anti-inflammatory effect of Chung-Dae Indigo Pulverata Levis, indigo naturalis) produced during indigo dyeing. As a result of in vitro cytotoxicity experiments using RAW 264.7 cell, Chung-Dae extract did not inhibit cell proliferation in Raw 264.7 cells in the range of 1~32 ㎍/mL. NO production was significantly reduced when Chung-Dae extracts were treated at concentrations of 2, 8, and 32 ㎍/mL (p<0.05). The pro-inflammatory cytokines TNF-α, IL-6, IL-1β and IFN-γ significantly decreased when the Chung-Dae extract was treated at concentrations of 2, 8, and 32 ㎍/mL compared to the LPS group, and similarly, the TNFα and IL-6 mRNA levels also decreased. Additionally, the mRNA level of COX-2 was also suppressed. At the protein expression level, the expression of TNF-α, IL-6, iNOS and COX-2 were observed with LPS and Chung-Dae extract significantly decreased compared to the group treated with only LPS (p<0.05). From the above results, it shows that Chung-Dae extract, a plant-derived compound, inhibits the inflammatory response induced by LPS in RAW 264.7 cells. and in particular, regulates the inflammatory response by inhibiting the expression of pro-inflammatory cytokines and inflammation-related enzymes.

Extracts and Enzymatic Hydrolysates Derived from Sea Cucumber Stichopus japonicas Ameliorate Hepatic Injury in BisphenolA-treated Mice (비스페놀A 유도 간 손상 마우스에서 해삼(Stichopus japonicas) 추출물 및 가수분해물의 간 기능 개선 효과)

  • Sejeong, Kim;Yun-Ho, Jo;Bi-Oh, Park;Dae-Seok, Yoo;Doo-Ho, Kim;Min-Jung, Kim;Youn-Gil, Kwak;Jin-Seong, Kim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • This study aimed to investigate the hepatoprotective activities of the sea cucumber products, including extracts and hydrolysates, in vitro and in vivo. Dried sea cucumber, produced on the western coast of Korea, was boiled in water or 70% ethanol at 85℃ or 100℃ for 18 or 24 h, respectively, to extract bioactive compounds. The enzymatic hydrolysates were prepared by reacting the dried sea cucumber with pepsin or neutral protease (PNL) under optimal enzyme conditions. The anti-inflammatory effect of the samples was investigated using RAW 264.7 cells treated with lipopolysaccharide (LPS). The amount of nitric oxide (NO) was produced from the cells treated with LPS and each sample was compared. Therefore, the pepsin hydrolysate treatment decreased NO production compared to LPS sole treatment. Furthermore, the effects of the samples on cell injury in the hepatic cell line and bisphenolA-induced hepatic injury mouse model were investigated. The water extracts and the pepsin hydrolysates of sea cucumber significantly inhibited cell injury generated in the hepatocytes without cytotoxicity (p < 0.05), whereas the ethanol extracts were cytotoxic. However, these results indicate that the extracts and the enzymatic hydrolysates derived from sea cucumber can be used as beneficial materials for inhibiting liver damage.

Effects of Polygonati Rhizoma Extracts on the Collagenase Activity and Procollagen Synthesis in Hs68 Human Fibroblasts and Tyrosinase Activity

  • Park, Dong-Su;Shin, Seon-Mi;Leem, Kang-Hyun
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.1-5
    • /
    • 2013
  • Objectives : This study was designed to investigate the collagen metabolism and tyrosinase activity of Polygonati Rhizoma extracts (PR). It's effects are to tonify spleen qi and augment the spleen yin. It enrichs the yin and moisten the lung. Methods : The effect of PR on type I procollagen production and collagenase (matrix metalloproteinase-1, henceforth referred as MMP-1) activity in human normal fibroblasts Hs68 after ultraviolet B (UVB, 312 nm) irradiation was measured by ELISA method. The tyrosinase activity after treatment of PR was measured. Results : There were no cytotoxicity at concentrations of 10, 30, $100{\mu}g/ml$. The reduced type I procollagen production was recovered by PR in UVB damaged Hs68 cells at a concentration of $100{\mu}g/ml$ ($16.2{\pm}0.0$ ng/ml) from control group ($13.9{\pm}0.5$ ng/ml). However there was no statistical significance. PR reduced The increased MMP-1 activity after UVB damage at concentrations of $10{\mu}g/ml$, $30{\mu}g/ml$, and $100{\mu}g/ml$ in a dose dependent manner ($42.2{\pm}20.5%$, $44.8{\pm}8.5%$, and $22.0{\pm}5.8%$). PR $100{\mu}g/ml$ treatment showed the statistical significace (p < 0.05). PR significantly reduced the tyrosinase activity at a concentration of 10 mg/ml ($32.0{\pm}12.8%$, p < 0.05). However, the L-DOPA oxidation was not changed. Conclusion : PR showed the anti-wrinkle effects and whitening effects in vitro. Although more researches are needed to validate the efficacy, these results suggest that PR may have potential as an anti-aging ingredient in cosmetic herb markets.

Boeravinone B, a natural rotenoid, inhibits osteoclast differentiation through modulating NF-κB, MAPK and PI3K/Akt signaling pathways

  • Xianyu Piao;Jung-Woo Kim;Moonjung Hyun;Zhao Wang;Suk-Gyun Park;In A Cho;Je-Hwang Ryu;Bin-Na Lee;Ju Han Song;Jeong-Tae Koh
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.545-550
    • /
    • 2023
  • Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomy-induced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis.

Novel Anti-Mesothelin Nanobodies and Recombinant Immunotoxins with Pseudomonas Exotoxin Catalytic Domain for Cancer Therapeutics

  • Minh Quan Nguyen;Do Hyung Kim;Hye Ji Shim;Huynh Kim Khanh Ta;Thi Luong Vu;Thi Kieu Oanh Nguyen;Jung Chae Lim;Han Choe
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.764-777
    • /
    • 2023
  • Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.

EVALUATION OF THE GENOTOXICITY OF FERRIC SULFATE BY COMET ASSAY (Comet assay를 이용한 Ferric Sulfate의 유전자 독성에 대한 연구)

  • Kang, Ho-Seung;Kim, Shin;Jeong, Tae-Sung;Park, Hae-Ryoun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.77-84
    • /
    • 2000
  • Although ferric sulfate has been proposed as an alternative to formocresol in pulpotomy treatment in primary teeth, it has been given little concern regarding its cytotoxicity and mutagenicity. In the present study, we assessed the in vitro genotoxic effect of a ferric sulfate on human gingival fibroblast cell line (HGF-1). DNA damage was evaluated using comet assay (single cell alkaline gel electrophoresis) and obtained the results as follows: 1. A dose-response relationship was found between ferric sulfate concentrations (0 to 5mM) and DNA damages. 2. Above the concentration of 0.1mM, DNA damage was significantly increased than those of the control (p<0.05). 2. At the fixed concentration of 0.05mM, no significant difference was found between exposure time and DNA damage. These findings suggest that ferric sulfate as a pulpotomy agent can induce DNA damage in human gingival fibroblasts.

  • PDF

Changes in Chemical Composition and Biological Activities of Oriental Crude Drugs by Food Processing Techniques IV - Increase in 5-HMF Content of Aurantii nobilis Pericarpium During Roasting Process - (식품학적 가공에 의한 생약의 성분 및 활성 변화 IV - Roasting처리에 의한 진피 중 5-HMF 함량증가 -)

  • Ni, Qinxue;Hur, Jong-Moon;Choi, Sun-Ha;Yang, Eun-Ju;Lee, Yu-Mi;Kang, Young-Hwa;Song, Kyung-Sik
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.2 s.149
    • /
    • pp.133-138
    • /
    • 2007
  • Regarding chemical changes in oriental drugs after food processing such as roasting, fermentation, and extrusion, fifty commonly-used medicinal plants were investigated. As a result, Aurantii nobilis Pericarpium (a tangerine peel from Citrus unshu Markovich) showed remarkably different HPLC profiles after being roasted. An increased peak was isolated by repeated chromatography and identified as 5-hydroxymethyl furfral (5-HMF) by means of instrumental analyses. The 5-HMF content of Aurantii nobilis Pericarpoum reached its maximum level after being roasted for 30 min at 225$^{\circ}C$ (49.2 mg/g extract, ca 42 times of increase over untreated control). Although there were no significant changes in in vitro biological activity such as antioxidative, anti-dementia, anti-hypertension, anti-coagulation, or cytotoxicity, before and after roasting process, our results suggested that simple heat treatment might improve the value of the above oriental drug since 5-HMF has been known to possess inhibitory activities toward nitric oxide formation, tyrosinase, and sickling of red blood cells.