• 제목/요약/키워드: In vitro culture of embryo

검색결과 614건 처리시간 0.031초

Fluoxetine Treatment during In Vitro Fertilization and Culture Increases Bovine Embryonic Development

  • Choe, Changyong;Kang, Dawon
    • 한국수정란이식학회지
    • /
    • 제29권2호
    • /
    • pp.133-139
    • /
    • 2014
  • $K^+$ channels are involved in the regulation of a variety of physiological functions, including proliferation, apoptosis and differentiation, in mammalian cells. Our previous study demonstrated that the blockage of $K^+$ channels inhibits mouse early embryonic development. This study was designed to identify the effect of $K^+$ channels during bovine embryonic development. $K^+$ channel blockers (tetraethylammonium (TEA), $BaCl_2$, quinine, ruthenium red and fluoxetine) were added to the culture medium during in vitro fertilization (IVF) for 6 h to first identify the short-term effect of these chemicals. Among $K^+$ channel blockers, fluoxetine, which is used as a selective serotonin reuptake inhibitor, significantly increased the blastocyst formation rate by approximately 6% when compared to control. During the in vitro maturation (IVM) of immature oocytes and the in vitro culture (IVC) of embryos, the oocytes and embryos were exposed to fluoxetine for either a short-term (6 h) or a long-term (24 h) to compare the embryonic development in response to exposure time. The 6 h exposure to fluoxetine during IVM did not affect the blastocyst formation rate, but the rate of blastocyst formation was reduced after the 24 h exposure. On the other hand, embryonic development increased approximately 10% in both groups of embryos exposed to fluoxetine for 6 and 24 h during IVC. Taken together, fluoxetine treatment during IVF and IVC, but not IVM, enhances bovine embryonic development. These results suggest that fluoxetine-modulated signals in oocytes and embryos could be an important factor towards enhancing bovine embryonic development.

Effect of Insulin Supplement on Development of Porcine Parthenogenetic Embryos

  • Yu, Youngkwang;Roy, Pantu Kumar;Min, Kyuhong;Na, Seungwon;Lee, Euncheol;Kim, Ghangyong;Fang, Xun;Salih, MB;Cho, Jongki
    • 한국수정란이식학회지
    • /
    • 제31권2호
    • /
    • pp.123-129
    • /
    • 2016
  • This study is performed to evaluate the effect of insulin in the porcine parthenogenetic embryo development. In porcine embryo culture, insulin is helpful factor in the process of embryo development. To identify this, insulin is used in pig embryos development. Therefore, this study was performed to investigate the effect of insulin on early embryonic development in pigs. For that, insulin positive or negative (0, 10 ug/mL) was supplemented in the porcine IVM media and then compared two groups divided by the cytoplasm of the black groups and white ring groups based on the distribution of lipid material of the cell cytoplasm in microscope. In maturation rates of porcine oocytes, significant higher black group rates were shown in the insulin positive groups compared with other groups ($56.0{\pm}2.1$ vs $46.2{\pm}0.3$). In the embryo culture, black groups were showed the significant higher cleavage rates ($82.1{\pm}0.8$, $78.3{\pm}0.1$ vs $63.2{\pm}0.3$, $63.4{\pm}0.0$), and blastocyst formation rates ($15.5{\pm}3.6$, $16.6{\pm}0.4$ vs $11.7{\pm}1.3$, $7.4{\pm}0.2$) regardless of whether the addition of insulin. Also, black groups were showed higher cell number of blastocyst ($33.2{\pm}2.5$, $35.5{\pm}2.6$ vs $31.2{\pm}2.1$, $31.3{\pm}2.2$). In conclusion, supplement of insulin producing black group in vitro maturation, it was effective in vitro maturation and embryonic development of pig embryos.

토기에서 핵이식 수정란의 초기 발달 속도와 난자 활성화가 후기배로의 발달에 미치는 영향 (Effect of Early Stage of Reconstituted Embryos with or without Oocyte Preactivation on Subsequent In Vitro Development of Nuclear Transplant Rabbit Embryos)

  • 전병균;윤희준;공일근;이효종;박충생
    • 한국수정란이식학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 1997
  • The present study was conducted to investigate the influence of embryo cell stage at 18h post-fusion and oocyte preactivation on sebsequent in vitro developmental potential in the nuclear transplant rabbit embryos. The embryos of 16-cell stage were collected and synchronized to G$_1$ phase of 32-cell stage. The recipient cytoplasms were obtained by removing the first polar body and chromosome rnass from the oocytes collected by non-dis-ruptive microsurgery procedure. The separated G$_1$ phase blastomeres of 32-cell stage were injected into non-preactivated recipient cytoplasms. Otherwise, the enucleated recipient cytoplasms were preactivated by electrical stimulation at 18h post-hCG injection and the separated G$_1$ phase blastomeres of 32-cell stage were injected. Mter culture until 20h post-hOG injection, the nuclear transplant oocytes were electrofused by electrical stimulation. The fused nuclear transplant embryos were classified into 3~4-cell, 2-cell and 1-cell stage at 18 hrs post-fusion and cultured until the embryos reached blastocyst stage. The developmental rate to blastocyst stage was significantly (P <0.05) higher in all the reconstituted embryos of 3~4-cell stage(58.0%) than in 2 and icell stage. The developmental rate to blastocyst stage in the embryos of 3~4-cell stage at 18 hrs post-fusion was significantly (P<0.05) higher in the reconstituted without oocyte preactivation(77.8%) than in the oocyte-preactivated embryos (33.3%). These results indicated that the higher rate of in the in vitro development to blastocyst stage might be obtained form the embryos which were reconstituted with nuclear donor of G$_1$ phase and non-preactivated oocyte, and developed more rapidly for 18 hrs post-fusion.

  • PDF

Viability of Somatic Cell Nuclear Transfer Embryos following Embryo Transfer in Korean Native Striped Cattle (Bos namadicus Falconer, Chikso)

  • Kwon, Dae-Jin;Park, Joo-Hee;Hwang, Hwan-Sub;Park, Yeon-Soo;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • 제31권4호
    • /
    • pp.235-240
    • /
    • 2007
  • This study was conducted to examine the viability of Korean native striped cattle (Bos namadicus Falconer, Chikso) clone embryos after embryo transfer. Chikso somatic cell nuclear transfer (SCNT) embryos were produced by fusion of ear skin cells derived from a female Chikso with enucleated oocytes matured in vitro for 18-24 hr. After in vitro culture of SCNT embryos for 7 to 8 days, fresh or vitrified blastocysts derived from SCNT were transferred into a uterine horn of recipient cows. Fifteen of total 43 recipients were pregnant at Day 50 and 4 recipients were maintained to term. Three IVF-derived calves and 1 clone Chikso calf were born. Pregnancy rate was higher when fresh embryos were transferred to recipients compared to vitrified embryos, but development to term was not different between both groups. The clone Chikso calf died at 5 days after birth due to the fullness of amniotic fluid in rumen and the infection of umbilical cord. The result of the present study shows that clone Chikso calf can produced from the embryo transfer of SCNT embryos, however, solution of abortion problem is necessary to improve the cloning efficiency.

Improved Preimplantation Development of Cloned Porcine Embryos through Supplementation of Histone Deacetylase Inhibitor MS-275

  • Fang, Xun;Qamar, Ahmad Yar;Shin, Sang Tae;Cho, Jongki
    • 한국임상수의학회지
    • /
    • 제36권5호
    • /
    • pp.253-258
    • /
    • 2019
  • The objective of this study was to analyse the effects of MS-275 (Class I and II histone deacetylase inhibitor) supplementation on the development of porcine in-vitro somatic nuclear transfer embryo production. During in-vitro development, early embryos were exposed to different concentrations of MS-275 (0, $5{\mu}M$, $10{\mu}M$, and $20{\mu}M$). In in-vitro culture supplemented group, the blastocyst development rate was significantly enhanced by $10{\mu}M$ concentration than other groups (24.0% vs. 19.3%, 21.8%, 11.5%; P < 0.05). Additionally, the 6 h supplementation group, significantly improved the blastocysts production than 24 h, 48 h and control groups (26.1% vs. 17.0%, 15.2%, 2.8%; P < 0.05). Following supplementation with optimal concentrations and time ($10{\mu}M$-6 h group), the blastocyst production was significantly higher than control (25.7% vs 15.8%; P < 0.05). The optimal concentrations of MS-275 significantly enhanced the percentages of ICM:TE than control (43.6% vs. 38.4%; P < 0.05) accompanied with significantly higher expression levels of reprogramming related genes (POU5F1, Naong, and SOX2). In conclusion, the optimal concentrations of $10{\mu}M$ MS-275 and 6 h supplementation during in-vitro culture can significantly improve the quality of porcine in-vitro somatic nuclear transfer embryos through histone acetylation and epigenetic modification. Increasing the efficiency of clonal animal production will greatly promote the development of animal disease models and xenotransplantation.

Effect of supplement of SCM in culture medium for in vitro development of bovine in vitro fertilized oocytes

  • Sang Jun Uhm
    • 한국동물생명공학회지
    • /
    • 제38권3호
    • /
    • pp.143-150
    • /
    • 2023
  • Background: The successful production of superior or transgenic offspring from in vitro produced embryos in cattle relies heavily on the quality of blastocyst stage embryos. In order to enhance the developmental competency of these embryos, a novel culture method was devised. Methods: This study utilized stem cell culture medium (SCM) from hESCs as a supplement within the culture medium for bovine in vitro produced embryos. To gauge the efficacy of this approach, in vitro fertilized embryos were subjected to culture in CR1aa medium enriched with one of three supplements: 0.3% BSA, 10% FBS, or 10% SCM. Results: The blastocyst development and hatching rates of one-cell zygotes cultured in CR1aa medium supplemented with SCM (23.9% and 10.2%) surpassed those cultured in CR1aa medium supplemented with BSA (9.3% and 0.0%) or FBS (3.1% and 0.0%) (p < 0.05). Furthermore, post-zygotic gene activation, cleaved embryos cultured in CR1aa medium supplemented with SCM (57.8% and 34.5%) exhibited notably higher rates (p < 0.05) compared to those cultured with BSA (12.9% and 0.0%) or FBS (45.7% and 22.5%) supplementation. Furthermore, the microinjection of SCM into the cytoplasm or pronucleus of fertilized zygotes resulted in elevated blastocyst development and hatching rates, particularly when the microinjected embryos were subsequently cultured in CR1aa medium supplemented with SCM from the 8-cell embryo stage onwards (p < 0.05), in contrast to those cultured with FBS supplementation. Conclusions: In conclusion, this study conclusively demonstrated that the incorporation of SCM into the culture medium significantly enhances the developmental progress of preimplantation embryos.

${\beta}-Lactoglobulin$과 BSA의 첨가가 돼지 체외수정란의 발달에 미치는 효과 (Effects of the Addition of ${\beta}-lactoglobulin$ and BSA on the Development of Porcine Embryos)

  • 박용수;김명신;박흠대
    • 한국수정란이식학회지
    • /
    • 제24권1호
    • /
    • pp.21-27
    • /
    • 2009
  • This study was performed to elucidate the effects of addition of ${\beta}-lactoglobulin$ and bovine serum albumin (BSA) in vitro maturation (IVM) and in vitro culture (IVC) medium on porcine embryo production. The development rate to the 2 cell ($71.4{\sim}75.6%$) and blastocyst stages ($6.8{\sim}13.3%$) with different BSA concentrations in IVM medium were similar among treatment groups. Blastocyst hatching rate was significantly higher in the control group (0.0mg/ml) than in the group of 1.0mg/ml supplement (20.0% vs. 0.0%; p<0.05). The development rate to the 2 cell ($62.0{\sim}70.6%$) and blastocyst stages ($15.4{\sim}38.5%$) with different ${\beta}-lactoglobulin$ concentrations in IVM medium was similar among treatment groups. The development rate to the blastocyst was significantly higher in the group of 1.0mg/ml(15.3%) than in the group of 0.5mg/ml supplement (7.6%, p<0.05). The development rate to the 2 cell and blastocyst stages following the first addition of ${\beta}-lactoglobulin$ in IVM medium was significantly higher in the control group (77.0% and 18.9%) and was $0{\sim}44\;hr$(77.2% and 16.9%) greater than that observed in other treatment groups (p<0.05). The development rate to the 2 cell stage ($68.1{\sim}74.8%$) and blastocyst stages ($9.2{\sim}12.7%$) with different BSA concentrations in IVC medium was similar among treatment groups. However, blastocyst hatching rate was significantly higher in the group of 3.0mg/ml supplement (30.0%) than in the control group (0.0%; p<0.05). The development rate to the 2 cell stage ($72.9{\sim}78.0%$), blastocyst ($7.1{\sim}14.2%$) and hatching stages ($33.3{\sim}38.1%$) were not different. The development rate to the 2 cell stage ($63.6{\sim}72.5%$), blastocyst ($8.4{\sim}16.1%$) and hatching stages ($18.2{\sim}37.5%$) at the different culture periods were similar among treatment groups. This study suggested that if the addition level and periods of ${\beta}-lactoglobulin$ addition are adjusted, it is possible to replace BSA in the in vitro porcine embryo production.

The potential role of granulosa cells in the maturation rate of immature human oocytes and embryo development: A co-culture study

  • Jahromi, Bahia Namavar;Mosallanezhad, Zahra;Matloob, Najmeh;Davari, Maryam;Ghobadifar, Mohamed Amin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제42권3호
    • /
    • pp.111-117
    • /
    • 2015
  • Objective: In order to increase the number of mature oocytes usable for intracytoplasmic sperm injection (ICSI), we aimed to investigate the effect of co-culturing granulosa cells (GCs) on human oocyte maturation in vitro, the fertilization rate, and embryo development. Methods: A total of 133 immature oocytes were retrieved and were randomly divided into two groups; oocytes that were cultured with GCs (group A) and oocytes that were cultured without GCs (group B). After in vitro maturation, only oocytes that displayed metaphase II (MII) underwent the ICSI procedure. The maturation and fertilization rates were analyzed, as well as the frequency of embryo development. Results: The mean age of the patients, their basal levels of follicle-stimulating hormone, and the number of oocytes recovered from the patients were all comparable between the two study groups. The number of oocytes that reached MII (mature oocytes) was 59 out of 70 (84.28%) in group A, compared to 41 out of 63 (65.07%) in group B (p=0.011). No significant difference between fertilization rates was found between the two study groups (p=0.702). The embryo development rate was higher in group A (33/59, 75%) than in group B (12/41, 42.85%; p=0.006). The proportion of highest-quality embryos and the blastocyst formation rate were significantly lower in group B than in group A (p=0.003 and p<0.001, respectively). Conclusion: The findings of the current study demonstrate that culturing immature human oocytes with GCs prior to ICSI improves the maturation rate and the likelihood of embryo development.

개 parthenote in vitro culture시 EDTA 첨가에 의한 발달율 향상 (Effect of EDTA on canine parthenote development during in vitro culture)

  • 정해윤;;노진구;;이휘철;위하연;옥선아;우제석;허태영;임기순;김종국;이승훈
    • 한국수정란이식학회지
    • /
    • 제33권3호
    • /
    • pp.139-147
    • /
    • 2018
  • Somatic cell nuclear transfer (SCNT) is a useful biotechnological tool for animal cloning. Until now, SCNT has been inefficient, especially in dog. It is believed that an embryo developmental block in SCNT embryos is cause of low production efficiency. However, no studies have been performed on canines for embryo developmental block. In this study, we attempted to evaluate the beneficial role of EDTA in canine parthenogenic (PA) embryos development to overcome embryo developmental block. The PA embryos were divided into 0.01 mM EDTA treated and non-treated groups. Embryo developmental efficiency was measured by activating chemically parthenote. After EDTA induction, PA embryos were evaluated for embryonic development, Reactive Oxygen Species (ROS) activity, mitochondrial integrity, ATP production and genomic activation. The EDTA treated PA embryos showed significantly higher survival rate and improved cavity formation compared to non-treated. Furthermore, cytoplasmic ROS level was mitigated and mitochondrial membrane potential was found significantly higher in EDTA treated group followed by higher ATP production. Moreover, major embryonic genomic activation specific markers/factors were also elevated in EDTA treated group. Conclusively, we elucidated that EDTA showed substantially positive effect to overcome embryo developmental block in canine.

Effects of Collection Time, Culture Time and Activation Treatment of Canine Oocytes on the IVM Rates

  • Lee, B.K.;Kim, S.K.
    • 한국수정란이식학회지
    • /
    • 제22권4호
    • /
    • pp.219-222
    • /
    • 2007
  • These study was carried out to investigate the effects of the collection time, culture time and activation of canine oocytes on in vitro maturation rates. The activated oocytes were cultured in 10% FCS+TCM-199 media containing hormonal supplements (10 IU/ml HCG, 10 IU/ml PMSG, 10 ug/ml gonadotropin) at 5% $CO_2$, 95% air, $38^{\circ}C$. 1. IVM rate of in vitro cultured cumulus-attached oocytes recovered from ovaries that collected at follicular and luteal stages of the reproductive cycles were 11.4% and 5.7%, respectively. IVM rate of oocytes recovered from ovaries that collected at follicular stages of the reproductive cycles was significantly higher than that of luteal stage (p<0.05). 2. When IVM was carried out at different periods of 40, 48, and 70 hrs, the IVM rates of oocytes matured in vitro were 2.9%, 8.6%, 5.7%, respectively. These results indicate that the IVM time between $48{\sim}70$ hrs gives the highest maturation rate for the oocytes matured at the different stages. 3. IVM rate of oocytes matured in vitro for 10 hrs after single and combined activation treatment by ET, IP and CH and Ca+DMAP, CH+DMAP, ET+CH were $11.5{\pm}1.2%,\;10.8{\pm}1.0%,\;9.6{\pm}1.2%\;and\;12.4{\pm}1.5%,\;11.8{\pm}1.5%,\;11.2{\pm}1.4%$ respectively. This was higher than that in both single and combined stimulated groups compared to control group ($6.2{\sim}7.2%$).