• Title/Summary/Keyword: In vitro binding assay

Search Result 187, Processing Time 0.024 seconds

Solid-phase PEGylation for Site-Specific Modification of Recombinant Interferon ${\alpha}$-2a : Process Performance, Characterization, and In-vitro Bioactivity (재조합 인터페론 알파-2a의 부위 특이적 수식을 위한 고체상 PEGylation : 공정 성능, 특성화 및 생물학적 활성)

  • Lee, Byung-Kook;Kwon, Jin-Sook;Lee, E.K.
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • In 'solid-phase' PEGylation, the conjugation reaction occurs as the proteins are attached to a solid matrix, and thus it can have distinct advantages over the conventional, solution-phase process. We report a case study: rhIFN-${\alpha}$-2a was first adsorbed to cation exchange resin and then N-terminally PEGylated by aldehyde mPEG of 5, 10, and 20 kD through reductive alkylation. After the PEGylation, salt gradient elution efficiently recovered the mono-PEGylate in a purified form from the unwanted species such as unmodified IFN, unreacted PEG, and others. The mono-PEGylation and its purification were integrated in a single chromatographic step. Depending on the molecular weight of the mPEG aldehyde used, the mono-PEGylation yield ranged 50-64%. We could overcome the major problems of random, or uncontrollable, multi-PEGylation and the post-PEGylation purification difficulties associated with the solution-phase process. N-terminal sequencing and MALDI-TOF MS confirmed that a PEG molecule was conjugated only to the N-terminus. Compared with the unmodified IFN, the mono-PEGylate showed the reduced anti-viral activity as measured by the cell proliferation assay. The bioactivity was reduced more as the higher molecular weight PEG was conjugated. Immunoreactivity, evaluated indirectly by antibody binding activity using a surface plasmon resonance biosensor, also decreased. Nevertheless, trypsin resistance as well as thermal stability was considerably improved.

In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng

  • Hossen, Muhammad Jahangir;Hong, Yong Deog;Baek, Kwang-Soo;Yoo, Sulgi;Hong, Yo Han;Kim, Ji Hye;Lee, Jeong-Oog;Kim, Donghyun;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • Background: BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods: We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-${\beta}$ (TRIF), to measure the activation of nuclear factor (NF)-${\kappa}B$ and interferon regulatory factor 3 (IRF3). Results: BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-${\beta}$ and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-${\kappa}B$ (p50 and p65). This extract inhibited the upregulation of NF-${\kappa}B$-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of ${\kappa}B$ ($I{\kappa}B{\alpha}$) kinase ($IKK{\beta}$), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-${\kappa}B$ pathway by blocking $IKK{\beta}$ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/$IKK{\beta}$/TBK1 overexpression strategy. Conclusion: Overall, our data suggest that the suppression of $IKK{\beta}$ and TBK1, which mediate transcriptional regulation of NF-${\kappa}B$ and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K.

In Vitro Properties and Biodistribution of Tc-99m and Re-188 Labeled Monoclonal Antibody CEA79.4 (Re-188과 Tc-99m 표지 단일클론항체 CEA79.4의 생체외 특성과 생체내 분포)

  • Hong, Mee-Kyoung;Jeong, Jae-Min;Yeo, Jeong-Seok;Kim, Kyung-Min;Chang, Young-Soo;Lee, Yong-Jin;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Lee, Seung-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.516-524
    • /
    • 1998
  • Purpose: Radiolabeled CEA79.4 antibody has a possibility to be used in radioimmunoscintigraphy or radioimmunotherapy of cancer. We investigated the in vitro properties and biodistribution of CEA79.4 antibody labeled with Re-188 or Tc-99m. Materials and Methods: CEA79.4 was reduced by 2-mercaptoethanol to produce-SH residue, and was labeled with Re-188 or Tc-99m. For direct labeling of Tc-99m, methylene-diphosphonate was used as transchelating agent. CEA79.4 in 50 mM Acetate Buffered Saline (ABS, pH 5.3) was labeled with Re-188, using stannous tartrate as reducing agent. In order to measure immunoreactivity and the affinity constant of radiolabeled antibody, cell binding assay and Scatchard analysis using human colon cancer cells SNU-C4, were performed. Biodistribution study of labeled CEA79.4 was carried out at 1, 14 and 24 hr in ICR mice. Results: Labeling efficiencies of Tc-99m and Re-188 labeled antibodies were $92.4{\pm}5.9%$ and $84.7{\pm}4.6%$, respectively, In vitro stability of Tc-99m-CEA79.4 in human serum was higher than Re-188-CEA79.4. Immunoreactivity and affinity constant of Tc-99m-CEA79.4 were 59.2% and $6.59{\times}10^9\;M^{-1}$, respectively, while those of Re-188-CEA79.4 were 41.6% and $4.2{\times}10^9\;M^{-1}$, respectively. After 24 hr of administrations of Re-188 and Tc-99m labeled antibody, the remaining antibodies in blood were 6.32 and 9.35% ID/g respectively. The biodistribution of each labeled antibody in other organs was similar because they did not accumulate in non-targeted organs. Conclusion: In vitro properties and biodistribution of Re-188-CEA79.4 were similar to those of Tc-99m-CEA79.4. It appears that Re-188-CEA79.4 can be used as a suitable agent for radioimmunotheraphy.

  • PDF

Radioimmunotherapy of Nude Mice Bearing Human Colon Carcinoma with I-131 Labeled Anti-carcinoembryonic Antigen Monoclonal Antibody (누드마우스에 이식된 인체대장암에서 I-131표지 항태아성암항원 단일클론항체를 이용한 방사면역치료법 : 치료성적에 관계되는 인자분석)

  • Kim, Byung-Tae;Lee, Kyung-Han;Kim, Sang-Eun;Choi, Yong;Chi, Dae-Yoon;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Chung, Hong-Keun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.3
    • /
    • pp.332-342
    • /
    • 1995
  • This study was designed to evaluate the effects of various factors on the therapeutic effect of the I-131 labeled anti-carcinoembryonic antigen monoclonal antibody(anti-CEA antibody). Tetrazolium-based colorimetric assay (MTT) was used to compare in vitro cytotoxicity of 3 Korean colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5) for selection of proper 2 cell lines in this study. The changes of the size of tumor which was xenografted to nude mice (balb/c nu/nu) were compared in 4 groups (group treated I-131 labeled anti-CEA antibody, group treated with non-radiolabeled anti-CEA antibody, group treated with I-131 labeled anti-human chorionic gonadotropin monoclonal antibody (anti-hCG antibody) as nonspecific antibody, and group injected with normal saline as a control). Immunohistochemical staining and in vivo autoradiography were performed after excision of the xenografted tumor. The results were as below mentioned. The in vitro cytotoxic effect of I-131 labeled anti-CEA antibody is most prominent in SNU-C5 cell line between 3 cancer cell lines. The changes of xenografted tumor size in both SNU-C4 and SNU-5S cell tumors at the thirteenth day after injection of the antibodies were smallest in the group treated with I-131 labeled anti-CEA antibody (SNU-C4/SNU-C5; 324/342%) comparing with other groups, group treated with anti-CEA antibody (622/660%), group treated with I-131 anti-hCG antibody (538/546%), and control group(1030/724%)(P<0.02 in SNU-C4 and P<0.1 in SNU-C5 at the 13th day after injection of antibodies). On the thirteenth day after injection of the antibodies nude mice were sacreficed to count the radiouptake of tumor and to check the changes of tumor size. Correlations between radiouptake and change of tumor size were calculated in each groups and significant negative correlation was only obtained in the group treated with I-131 anti-CEA antibody (p<0.05). There were no correlations between antigenic expression of carcinoembryonic antigen and distribution of anti-CEA antibody in both SNU-C4 and SNU-C5 cell tumors on immunoperoxidase staining. On in vivo autoradiography the distributions of anti-CEA antibody were heterogeneous and the intensities of binding were various in SNU-C4 and SNU-C5 cell tumors. It is concluded that I-131 labeled tumor-specific monoclonal antibody, anti-CEA antibody is effective in suppressing the xenografted tumor growth and the effect is influenced by sensitivity of tumor cell itself to the radiolabeled antibody and other local factors instead of specificity of antibody.

  • PDF

Development of the feedback resistant pheAFBR from E. coli and studies on its biochemical characteristics (E. coli 유래 pheA 유전자의 되먹임제어 저항성 돌연변이의 구축과 그 단백질의 생화학적 특성 연구)

  • Cao, Thinh-Phat;Lee, Sang-Hyun;Hong, KwangWon;Lee, Sung Haeng
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.278-285
    • /
    • 2016
  • The bifunctional PheA protein, having chorismate mutase and prephenate dehydratase (CMPD) activities, is one of the key regulatory enzymes in the aromatic amino acid biosynthesis in Escherichia coli, and is negatively regulated by an end-product, phenyalanine. Therefore, PheA protein has been thought as useful for protein engineering to utilize mass production of essential amino acid phenylalanine. To obtain feedback resistant PheA protein against phenylalanine, we mutated by using random mutagenesis, extensively screened, and obtained $pheA^{FBR}$ gene encoding a feedback resistant PheA protein. The mutant PheA protein contains substitution of Leu to Phe at the position of 118, displaying that higher affinity (about $290{\mu}M$) for prephenate in comparison with that (about $850{\mu}M$) of wild type PheA protein. Kinetic analysis showed that the saturation curve of $PheA^{FBR}$ against phenyalanine is hyperbolic rather than that of $PheA^{WT}$, which is sigmoidal, indicating that the L118F mutant enzyme has no cooperative effects in prephenate binding in the presence of phenylalanine. In vitro enzymatic assay showed that the mutant protein exhibited increased activity by above 3.5 folds compared to the wild type enzyme. Moreover, L118F mutant protein appeared insensitive to feedback inhibition with keeping 40% of enzymatic activity even in the presence of 10 mM phenylalanine at which the activity of wild type $PheA^{WT}$ was not observed. The substitution of Leu to Phe in CMPD may induce significant conformational change for this enzyme to acquire feedback resistance to end-product of the pathway by modulating kinetic properties.

Effect of Digestive Enzymes on the Allergenicity of Autoclaved Market Pork Sausages (가압가열 처리한 시판 돈육 소시지의 항원성에 미치는 소화효소의 영향)

  • Kim, Seo-Jin;Kim, Koth-Bong-Woo-Ri;Song, Eu-Jin;Lee, So-Young;Yoon, So-Young;Lee, So-Jeong;Lee, Chung-Jo;Ahn, Dong-Hyun
    • Food Science of Animal Resources
    • /
    • v.29 no.2
    • /
    • pp.238-244
    • /
    • 2009
  • Food allergy is a serious nutritional problem in both children and adults. Therefore, food allergenicity reduction methods are greatly needed. The allergenicity is altered by various manufacturing processes, and the digestibility of food proteins can be affected by food processing. This study was conducted to investigate the effect of in-vitro digestibility on the allergenicity of autoclaved market pork sausages using pepsin (30min) and trypsin (5, 30, 60, 90, and 120min). The binding ability of the porcine serum albumin (PSA) from sausages A and B significantly decreased by about 30 and 23%, respectively, after autoclave treatment (121; 5, 10, and 30 min). After the pepsin and trypsin treatments, the binding ability of products A and B at 30 min decreased. These competitive indirect enzyme-linked immunosorbent assay (ci-ELISA) results corresponded well with the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting results. The results demonstrated that the allergenicity of pork sausages considerably decreased after autoclave treatment, and were also maintained or decreased after enzyme treatment. Accordingly, autoclave treatment represents a promising processing technology for the reduction of the allergenicity of diverse food products.

Purification of Human HtrA1 Expressed in E. coli and Characterization of Its Serine Protease Activity (E. coli에서 발현된 human HtrA1 단백질의 정제와 HtrA1의 serine protease 활성 조건에 관한 연구)

  • Kim, Kyung-Hee;Kim, Sang-Soo;Kim, Goo-Young;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1133-1140
    • /
    • 2006
  • Human HtrA1 (High temperature requirement protein A1) is a homologue of the E. coli periplasmic serine protease HtrA. A recent study has demonstrated that HtrA1 is a serine protease involved in processing of insulin like growth factor binding protein (ICFBP), indicating that it serves as an important regulator of IGF activity. Additionally, several lines of evidence suggest a striking correlation between proteolytic activity of HtrA1 serine protease and the pathogenesis of several diseases; however, physiological roles of HtrA1 remain to be elucidated. We used the pGEX bacterial expression system to develop a simple and rapid method for purifying HtrA1, and the recombinant HtrA1 protein was utilized to investigate the optimal conditions in executing its proteolytic activity. The proteolytically active HtrA1 was purified to approximately 85% purity, although the yield of the recombinant HtrA1 protein was slightly low $460{\mu}g$ for 1 liter E. coli culture). Using in vitro endoproteolytic cleavage assay, we identified that the HtrA1 serine protease activity was dependent on the enzyme concentration and the incubation time and that the best reaction temperature was $42^{\circ}C$ instead of $37^{\circ}C$. We arbitrary defined one unit of proteolytic activity of the HtrA1 serine protease as 200nM of HtrA1 that cleaves half of $5{\mu}M\;of\;{\beta}-casein$ during 3 hr incubation at $37^{\circ}C$. Our study provides a method for generating useful reagents to investigate the molecular mechanisms by which HtrA1 serine protease activity contributes in regulating its physiological function and to identify natural substrates of HtrA1.