• Title/Summary/Keyword: In vitro antifungal activity

Search Result 274, Processing Time 0.03 seconds

In vivo Anti-fungal Activity of the Essential Oil Fraction from Thymus Species and in vitro Synergism with Clotrimazole

  • Kim, Ji-Hyun;Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.13 no.3
    • /
    • pp.258-262
    • /
    • 2007
  • The antifungal activity of the essential oil fraction from Thymus magus, and its major component thymol, against Candida albicans was investigated in vitro and in vivo. The combined effects of the oils and clotrimazole, a commonly used antifungal drug for treatment of external candidiasis, were evaluated in this study. In experimental vaginal candidiasis the essential oil fraction of T. magnus resulted in relatively milder inhibition of fungal growth following the inoculation of test mice compared to clotrimazole. However, new fungal growth was not detected up to 12 days after cessation of treatment. In contrast, in a similar experiment using clotrimazole, C. albicans was detected in the $12^{th}$ day post-treatment with the sample. This result indicates that T. magnus oil could be a promising drug to control vaginal candidiasis. In checkerboard titer tests, the combination of clotrimazole with the essential oil fraction of T. magus or T. quinquecostatus resulted in significant synergism, with FIC indices between 0.14 and 0.27 against C. albicans, while clotrimazole combined with thymol, the major component of these oils, produced only an additive effect, with FIC indices ranging between 0.50 and 1.00. Thus, the prominent synergistic effects of clotrimazole combined with T. magus essential oil indicate that these compounds may be an effective treatment for C. albicans infections.

In vitro Antifungal Activity of 4-Hydroxyderricin and Acetylshikonin against Ascosphaera apis

  • Park, Sangchul;Shin, Yu-Kyong;Cho, MyoungLae;Kwon, Hyun Sook;Kwon, Yun Ju;Kim, Ki-Young
    • Journal of Apiculture
    • /
    • v.34 no.2
    • /
    • pp.125-129
    • /
    • 2019
  • Honey bees are important pollinators in agriculture, but are threatened by the pathogen Ascosphaera apis, which causes chalkbrood. Despite attempts to control this fungus using synthetic fungicides, none of them have been proven to be completely effective. Among 640 natural compounds that we tested, 4-hydroxyderricin (MIC=3.125, 6.25 mg/L after 24 h and 48 h growth, respectively) exhibited the strongest anti- Ascosphaera apis activity, followed by acetylshikonin (MIC=12.5 mg/L for 24 h and 48 h growth). 4-Hydroxyderricin showed selective growth inhibition of Ascosphaera apis and Rhizopus oryzae among tested fungus strains. Treatment 4-hydroxyderricin with miconazole revealed a synergistic effect (FICI=0.65±0.13 at 48 h incubation). These findings suggest that 4-hydroxyderricin, which has antifungal activity against Ascosphaera apis but few other fungal species, can effectively control infectious fungal diseases. Combined treatment of bees with 4-hydroxyderricin and miconazole could reduce cytotoxicity and improve the cost effectiveness of treatment.

Diterpenoids from the Roots of Agastache rugosa and their Cytotoxic Activities (배초향 지하부의 Diterpene 성분과 그 세포독성)

  • Lee, Hyeong-Kyu;Byon, Soon-Jung;Oh, Se-Ryang;Kim, Jung-Il;Kim, Young-Ho;Lee, Chong-Ock
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.4 s.99
    • /
    • pp.319-327
    • /
    • 1994
  • A new diterpene, agastanol[1] with dehydroagastol[2] was isolated from th root of Agastache rugosa, and their structures were elucidated by chemical and instrumental analysis. Agastanol[1], its derivatives, agastanone[3] and methylagastanol[5], and dehydroagastol[2] showed cytotoxic activites against in vitro human cancer cell lines. Agastanol[1] showed weak antifungal activity against Trichophyton rubrum.

  • PDF

In Vitro Antifungal Activity of Amphotericin B, Clotrimazole and 5-Fluorocytosine in Alone and in Combination against Candida Species (Candida균주에 대한 항진균제 Amphotericin B, Clotrimazole 및 5-Fluorocytosine의 단독 및 복합처리에 따른 항균력 검사)

  • Koh, Choon-Myung;Joo, Hye-Jung;Park, Hyoung-Sik
    • The Journal of the Korean Society for Microbiology
    • /
    • v.19 no.1
    • /
    • pp.35-40
    • /
    • 1984
  • The effectiveness of three antifungal antibiotics amphotericin B, clotrimazole and 5-fluorocytosine was tested against 120 clinical isolated Candida species. The minimum inhibitory concentrations of amphotericin B was considerably lower than those of clotrimazole and 5-fluorocytosine. High-level resistance to 5-fluorocytosine was present in 50% of the isolates. The combination of clotrimazole and 5-fluorocytosine produced synergistic inhibition against all 20 strains of Candida albicans tested that were relatively resistant to both antifungal agents.

  • PDF

Isolation and characterization of an antifungal substance from Burkholderia cepacia, an endophytic bacteria obtained from roots of cucumber.

  • Park, J.H.;Park, G.J.;Lee, S.W;Jang, K.S.;Park, Y.H.;Chung, Y.R.;Cho, K.Y.;Kim, J.C.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.95.2-96
    • /
    • 2003
  • In order to develop a new microbial fungicide for the control of vegetable diseases using endophytic bacteria, a total of 260 bacterial strains were isolated from fresh tissues of 5 plant species. After they were cultured in broth media, their antifungal activities were screened by in vivo bioassays against Botrytis cinerea(tomato gray mold), Pythium ultimum(cucumber damping-off), Phytopkhora infestans(tomato late blight), Colletotrichum orbiculare(cucumber anthracnose), and Blumeria graminis f. sp. hordei(barley powdery mildew). As the results of screening, 38 bacterial strains showed potent antifungal activities against at least one of 5 plant pathogens. A bacterial strain EB072 displayed potent disease control activities against 3 plant diseases. Among the bacterial strains with a potent antifungal activity against cucunlber anthracnose, three bacterial strains, EB054, EB151 and EB215, also displayed a potent in vitro antifungal activity against C. acutatum, a fungal agent causing pepper anthracnose. A bacterial strain EB215 obtained from roots of cucumber was identified as Burkholderia cepacia based on its physiological and biochemical characteristics and 165 rRNA gene sequence. An antifungal substance was isolated from the liquid cultures of B. cepacia EB215 strain by ethyl acetate partitioning, repeated silica gel column chromatography, and invitro bioassay, Its structural determination is in progress by various instrumental analyses.

  • PDF

Antifungal Activity of Some Essential Oils and Their Major Constituents on 3 Plant Pathogenic Fungi (식물병원성 곰팡이에 대한 몇 가지 식물정유 및 주성분의 성장억제 효과)

  • Cho Hyun Ji;Shin Dongill
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.1003-1008
    • /
    • 2004
  • 11 plant essential oils are screened in vitro for their antifungal activities against Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani, which are causative agents of serious plant diseases. The radial growth of the test fungi were reduced in response to the oils. Among them, the essential oil from the bark of Cinnamomum zeylanicum inhibited 3 tested fungi growth, strongly, followed by those of oregano and thyme. The major constituents of the three essential oils, cinnaldehyde, carvacrol and thymol were tested for their effects on the fungi. From the results obtained, cinnamaldehyde, the major constituents of C. zeylanicum bark esential oil, has potential to be developed as a biopesticide for controlling phytopathogenic fungi causing serious damages on the important crops cultivated in Korea.

Biocontrol of Tomato Fusarium Wilt by a Novel Genotype of 2,4-Diacetylphloroglucinol-producing Pseudomonas sp. NJ134

  • Kang, Beom-Ryong
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2012
  • The rhizobacterium NJ134, showing strong $in$ $vitro$ antifungal activity against $Fusarium$ $oxysporum$, was isolated from field grown tomato plants and identified as $Pseudomonas$ sp. based on 16S ribosomal DNA sequence and biochemical analyses. The antifungal compound purified by gas chromatography-mass spectrometry, infrared, and nuclear magnetic resonance analyses from NJ134 cultures was polyketide 2,4-diacetylphloroglucinol (DAPG). Analysis of the sequence of part of one of the genes associated with DAPG synthesis, $phlD$, indicated that the DAPG producer NJ134 was a novel genotype or variant of existing genotype termed O that have been categorized based on isolates from Europe and North America. A greenhouse study indicated that about $10^8$ CFU/g of soil NJ134 culture application was required for effective biocontrol of Fusarium wilt in tomato. These results suggest that a new variant genotype of a DAPG-producing strain of $Pseudomonas$ has the potential to control Fusarium wilt under the low disease pressure conditions.

Identification of an Antifungal Chitinase from a Potential Biocontrol Agent, Bacillus cereus 28-9

  • Huang, Chien-Jui;Wang, Tang-Kai;Chung, Shu-Chun;Chen, Chao-Ying
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.82-88
    • /
    • 2005
  • Bacillus cereus 28-9 is a chitinolytic bacterium isolated from lily plant in Taiwan. This bacterium exhibited biocontrol potential on Botrytis leaf blight of lily as demonstrated by a detached leaf assay and dual culture assay. At least two chitinases (ChiCW and ChiCH) were excreted by B. cereus 28-9. The ChiCW-encoding gene was cloned and moderately expressed in Escherichia coli DH5$\alpha$. Near homogenous ChiCW was obtained from the periplasmic fraction of E. coli cells harboring chiCW by a purification procedure. An in vitro assay showed that the purified ChiCW had inhibitory activity on conidial germination of Botrytis elliptica, a major fungal pathogen of lily leaf blight.

Antifungal Activity of Paenibacillus kribbensis Strain T-9 Isolated from Soils against Several Plant Pathogenic Fungi

  • Xu, Sheng Jun;Hong, Sae Jin;Choi, Woobong;Kim, Byung Sup
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.102-108
    • /
    • 2014
  • The bacterial strain T-9, which shows strong antifungal activity, is isolated from the soils of Samcheok, Gangwondo and identified as Paenibacillus kribbensis according to morphological and taxonomic characteristics and 16S rRNA gene sequence analysis. The P. kribbensis strain T-9 strongly inhibits the growth of various phytopathogenic fungi including Botrytis cinerea, Colletotricum acutatum, Fusarium oxysporum f. sp. radicis-lycopersici, Magnaporthe oryzae, Phytophthora capsici, Rhizoctonia solani, and Sclerotium cepivorum in vitro. Also, the P. kribbensis strain T-9 exhibited similar or better control effects to plant diseases than in fungicide treatment through in vivo assays. In the 2-year greenhouse experiments, P. kribbensis strain T-9 was highly effective against clubroot. In the 2-year field trials, the P. kribbensis strain T-9 was less effective than the fungicide, but reduced clubroot on Chinese cabbage when compared to the control. The above-described results indicate that the strain T-9 may have the potential as an antagonist to control various phytopathogenic fungi.