DOI QR코드

DOI QR Code

Biocontrol of Tomato Fusarium Wilt by a Novel Genotype of 2,4-Diacetylphloroglucinol-producing Pseudomonas sp. NJ134

  • Kang, Beom-Ryong (Environment-Friendly Agricultural Research Institute, Jeollanamdo Agricultural Research and Extension Services)
  • Received : 2011.10.26
  • Accepted : 2011.11.21
  • Published : 2012.03.01

Abstract

The rhizobacterium NJ134, showing strong $in$ $vitro$ antifungal activity against $Fusarium$ $oxysporum$, was isolated from field grown tomato plants and identified as $Pseudomonas$ sp. based on 16S ribosomal DNA sequence and biochemical analyses. The antifungal compound purified by gas chromatography-mass spectrometry, infrared, and nuclear magnetic resonance analyses from NJ134 cultures was polyketide 2,4-diacetylphloroglucinol (DAPG). Analysis of the sequence of part of one of the genes associated with DAPG synthesis, $phlD$, indicated that the DAPG producer NJ134 was a novel genotype or variant of existing genotype termed O that have been categorized based on isolates from Europe and North America. A greenhouse study indicated that about $10^8$ CFU/g of soil NJ134 culture application was required for effective biocontrol of Fusarium wilt in tomato. These results suggest that a new variant genotype of a DAPG-producing strain of $Pseudomonas$ has the potential to control Fusarium wilt under the low disease pressure conditions.

Keywords

References

  1. Brisbane, P. G., Janik, L. J., Tate, M. E. and Warren, R. F. O. 1987. Revised structure for the phenazine antibiotic from Pseudomonas fluorescens 2-79. Antimicrob. Agents Chemother. 31:1967-1971. https://doi.org/10.1128/AAC.31.12.1967
  2. Broadbent, D., Mabelis, R. P. and Spenser, H. 1976. C-acetyphloroglucinols from Pseudomonas fluorescens. Phytochem. 15:1785.
  3. Cho, J.-C. and Tiedje, J. M. 2000. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66:5448-5456. https://doi.org/10.1128/AEM.66.12.5448-5456.2000
  4. Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80. https://doi.org/10.1146/annurev.py.31.090193.000413
  5. De Boer, M., Bom, P., Kindt, F., Keurentjes, J. J., van der Sluis, I., van Loon, L. C. and Bakker, P. A. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626-632. https://doi.org/10.1094/PHYTO.2003.93.5.626
  6. De La Fuente, L., Mavrodi1, D. V., Landa, B. B., Thomashow, L. S. and Weller, D. M. 2006. phlD-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. FEMS Micro. Ecol. 56:64-78. https://doi.org/10.1111/j.1574-6941.2006.00074.x
  7. Dwivedi, D. and Johri, B. N. 2003. Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Curr. Sci. 85:1693-1703.
  8. Gerber, N. N. 1969. New microbial phenazines. J. Heterocyclic Chem. 6:297-300. https://doi.org/10.1002/jhet.5570060305
  9. Haas, D., Keel, C., Laville, J., Maurhofer, M., Oberhansli, T., Schnider, U., Voisard, C., Wuthrich, B. and Defago, G. 1991. Secondary metabolites of Pseudomonas fluorescens strain CHA0 involved in the suppression of root diseases. In: Advances in molecular genetics of plant-microbe interactions, ed. by H. Hennecke and D. P. S. Verma, pp. 450-456. Kluwer Academic Publishers, Hingham, Mass.
  10. Hashimoto, M. and Hattori, K. 1966a. Isopyrrolnitrin: a metabolite from Pseudomonas. Bull. Chem. Soc. Jpn. 39:410. https://doi.org/10.1246/bcsj.39.410
  11. Hashimoto, M. and Hattori, K. 1966b. Oxypyrrolnitrin: a metabolite of Pseudomonas. Chem. Pharm. Bull. 14:1314-1316. https://doi.org/10.1248/cpb.14.1314
  12. Hays, E. E., Wells, I. C., Katzman, P. A., Cain, C. K., Jacobs, F. A., Thayer, S. A., Doisy, E. A., Gaby, W. L., Roberts, E. C., Muir, R. D., Carroll, C. J., Jones, L. R. and Wade, N. J. 1945. Antibiotic substances produced by Pseudomonas aeruginosa. J. Biol. Chem. 159:725-750.
  13. Imanaka, H., Kousaka, M., Tamura, G. and Arima, K. 1965. Studies on pyrrolnitrin, a new antibiotic III. Structure of pyrrolnitrin. J. Antibiot. Ser. 18:207-210.
  14. Jarvis, W. R. 1988. Fusarium crown and root rot of tomatoes. Phytoprotection 69:49-64.
  15. Jones, J. B., Jones, J. P., Stall, R. E. and Zitter, T. A. 1991. Compendium of tomato diseases. American Phytopathological Society, St. Paul, MN.
  16. Keel, C., Weller, D. M., Natsch, A., Défago, G., Cook, R. J. and Thomashow, L. S. 1996. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl. Environ. Microbiol. 62:552-562.
  17. Keel, C., Wirthner, P. H., Oberhansli, T. H., Voisard, C., Burger, Haas, U. D. and Defago, G. 1990. Pseudomonads as antagonists of plants pathogens in the rhizosphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9:327-341.
  18. Kim,Y. C., Lee, J. H., Bae, Y.-S. Sohn, B.-K. and Park, S. K. 2010. Development of effective environmentally-friendly approaches to control Alternaria blight and anthracnose diseases of Korean ginseng. Eur. J. Plant Pathol. 127:443-450. https://doi.org/10.1007/s10658-010-9610-4
  19. Larkin, R. P. and Fravel, D. R. 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis. 82:1022-1028. https://doi.org/10.1094/PDIS.1998.82.9.1022
  20. Landa, B. B., de Werd, H. A. E., McSpadden-Gardener, B. B. and Weller, D. M. 2002a. Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol- producing Pseudomonas fluorescens in the rhizosphere. Phytopathology 92:129-137. https://doi.org/10.1094/PHYTO.2002.92.2.129
  21. Landa, B. B., Mavrodi, O. V., Raaijmakers, J. M., McSpadden-Gardener, B. B., Thomashow, L. S. and Weller, D. M. 2002b. Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens to colonize the roots of pea. Appl. Environ. Microbiol. 68:3226-3237. https://doi.org/10.1128/AEM.68.7.3226-3237.2002
  22. Mavrodi, O. V., McSpadden-Gardener, B. B., Mavrodi, D. V., Bonsall, R. F., Weller, D. M. and Thomashow, L. S. 2001. Genetic diversity of phlD from 2,4-diacetylphloroglucinolproducing fluorescent Pseudomonas spp. Phytopathology 91:35-43. https://doi.org/10.1094/PHYTO.2001.91.1.35
  23. McSpadden-Gardener, B. B., Gutierrez, L. J., Joshi, R., Edema, R. and Lutton, E. 2005. Distribution and biocontrol potential of phlD pseudomonads in corn and soybean fields. Phytopathology 95:715-724. https://doi.org/10.1094/PHYTO-95-0715
  24. McSpadden-Gardener, B. B., Mavrodi, D. V., Thomashow, L. S. and Weller, D. M. 2001. A rapid polymerase chain reactionbased assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinol-producing bacteria. Phytopathology 91:44-54. https://doi.org/10.1094/PHYTO.2001.91.1.44
  25. McSpadden-Gardener, B. B., Schroeder, K. L., Kalloger, S. E., Raaijmakers, J. M., Thomashow, L. S. and Weller, D. M.. 2000. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 66:1939-1946. https://doi.org/10.1128/AEM.66.5.1939-1946.2000
  26. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  27. Thomashow, L. S., Weller, D. M., Bonsall, R. F. and Pierson, L. S. 1990. Production of the antibiotic phenazine 1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56:908-912.
  28. Threlfall, R. J. 1972. Effect of pentachloronitrobenzene (PCNB) and other chemicals on sensitive and PCNB-resistant strains of Aspergillus nidulans. J. Gen. Microbiol. 71:173-180. https://doi.org/10.1099/00221287-71-1-173
  29. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  30. Weller, D. M., Raaijmakers, J. M., McSpadden-Gardener, B. B. and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309-348. https://doi.org/10.1146/annurev.phyto.40.030402.110010
  31. Woodruff, H. B. 1988. Natural products from microorganisms. Science 208:1225-1229.
  32. Wratten, S. J., Wolfe, M. S., Anderson, R. J. and Faukner, D. J. 1977. Antibiotic metabolites from a marine pseudomonad. Antimicrob. Agents Chemother. 11:411-414. https://doi.org/10.1128/AAC.11.3.411

Cited by

  1. Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae vol.32, pp.3, 2016, https://doi.org/10.5423/PPJ.NT.12.2015.0274
  2. Prospects for Biological Soilborne Disease Control: Application of Indigenous Versus Synthetic Microbiomes vol.107, pp.3, 2017, https://doi.org/10.1094/PHYTO-09-16-0330-RVW
  3. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies vol.37, pp.2, 2017, https://doi.org/10.3109/07388551.2015.1130683