References
- Brisbane, P. G., Janik, L. J., Tate, M. E. and Warren, R. F. O. 1987. Revised structure for the phenazine antibiotic from Pseudomonas fluorescens 2-79. Antimicrob. Agents Chemother. 31:1967-1971. https://doi.org/10.1128/AAC.31.12.1967
- Broadbent, D., Mabelis, R. P. and Spenser, H. 1976. C-acetyphloroglucinols from Pseudomonas fluorescens. Phytochem. 15:1785.
- Cho, J.-C. and Tiedje, J. M. 2000. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66:5448-5456. https://doi.org/10.1128/AEM.66.12.5448-5456.2000
- Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80. https://doi.org/10.1146/annurev.py.31.090193.000413
- De Boer, M., Bom, P., Kindt, F., Keurentjes, J. J., van der Sluis, I., van Loon, L. C. and Bakker, P. A. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626-632. https://doi.org/10.1094/PHYTO.2003.93.5.626
- De La Fuente, L., Mavrodi1, D. V., Landa, B. B., Thomashow, L. S. and Weller, D. M. 2006. phlD-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. FEMS Micro. Ecol. 56:64-78. https://doi.org/10.1111/j.1574-6941.2006.00074.x
- Dwivedi, D. and Johri, B. N. 2003. Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Curr. Sci. 85:1693-1703.
- Gerber, N. N. 1969. New microbial phenazines. J. Heterocyclic Chem. 6:297-300. https://doi.org/10.1002/jhet.5570060305
- Haas, D., Keel, C., Laville, J., Maurhofer, M., Oberhansli, T., Schnider, U., Voisard, C., Wuthrich, B. and Defago, G. 1991. Secondary metabolites of Pseudomonas fluorescens strain CHA0 involved in the suppression of root diseases. In: Advances in molecular genetics of plant-microbe interactions, ed. by H. Hennecke and D. P. S. Verma, pp. 450-456. Kluwer Academic Publishers, Hingham, Mass.
- Hashimoto, M. and Hattori, K. 1966a. Isopyrrolnitrin: a metabolite from Pseudomonas. Bull. Chem. Soc. Jpn. 39:410. https://doi.org/10.1246/bcsj.39.410
- Hashimoto, M. and Hattori, K. 1966b. Oxypyrrolnitrin: a metabolite of Pseudomonas. Chem. Pharm. Bull. 14:1314-1316. https://doi.org/10.1248/cpb.14.1314
- Hays, E. E., Wells, I. C., Katzman, P. A., Cain, C. K., Jacobs, F. A., Thayer, S. A., Doisy, E. A., Gaby, W. L., Roberts, E. C., Muir, R. D., Carroll, C. J., Jones, L. R. and Wade, N. J. 1945. Antibiotic substances produced by Pseudomonas aeruginosa. J. Biol. Chem. 159:725-750.
- Imanaka, H., Kousaka, M., Tamura, G. and Arima, K. 1965. Studies on pyrrolnitrin, a new antibiotic III. Structure of pyrrolnitrin. J. Antibiot. Ser. 18:207-210.
- Jarvis, W. R. 1988. Fusarium crown and root rot of tomatoes. Phytoprotection 69:49-64.
- Jones, J. B., Jones, J. P., Stall, R. E. and Zitter, T. A. 1991. Compendium of tomato diseases. American Phytopathological Society, St. Paul, MN.
- Keel, C., Weller, D. M., Natsch, A., Défago, G., Cook, R. J. and Thomashow, L. S. 1996. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl. Environ. Microbiol. 62:552-562.
- Keel, C., Wirthner, P. H., Oberhansli, T. H., Voisard, C., Burger, Haas, U. D. and Defago, G. 1990. Pseudomonads as antagonists of plants pathogens in the rhizosphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9:327-341.
- Kim,Y. C., Lee, J. H., Bae, Y.-S. Sohn, B.-K. and Park, S. K. 2010. Development of effective environmentally-friendly approaches to control Alternaria blight and anthracnose diseases of Korean ginseng. Eur. J. Plant Pathol. 127:443-450. https://doi.org/10.1007/s10658-010-9610-4
- Larkin, R. P. and Fravel, D. R. 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis. 82:1022-1028. https://doi.org/10.1094/PDIS.1998.82.9.1022
- Landa, B. B., de Werd, H. A. E., McSpadden-Gardener, B. B. and Weller, D. M. 2002a. Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol- producing Pseudomonas fluorescens in the rhizosphere. Phytopathology 92:129-137. https://doi.org/10.1094/PHYTO.2002.92.2.129
- Landa, B. B., Mavrodi, O. V., Raaijmakers, J. M., McSpadden-Gardener, B. B., Thomashow, L. S. and Weller, D. M. 2002b. Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens to colonize the roots of pea. Appl. Environ. Microbiol. 68:3226-3237. https://doi.org/10.1128/AEM.68.7.3226-3237.2002
- Mavrodi, O. V., McSpadden-Gardener, B. B., Mavrodi, D. V., Bonsall, R. F., Weller, D. M. and Thomashow, L. S. 2001. Genetic diversity of phlD from 2,4-diacetylphloroglucinolproducing fluorescent Pseudomonas spp. Phytopathology 91:35-43. https://doi.org/10.1094/PHYTO.2001.91.1.35
- McSpadden-Gardener, B. B., Gutierrez, L. J., Joshi, R., Edema, R. and Lutton, E. 2005. Distribution and biocontrol potential of phlD pseudomonads in corn and soybean fields. Phytopathology 95:715-724. https://doi.org/10.1094/PHYTO-95-0715
- McSpadden-Gardener, B. B., Mavrodi, D. V., Thomashow, L. S. and Weller, D. M. 2001. A rapid polymerase chain reactionbased assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinol-producing bacteria. Phytopathology 91:44-54. https://doi.org/10.1094/PHYTO.2001.91.1.44
- McSpadden-Gardener, B. B., Schroeder, K. L., Kalloger, S. E., Raaijmakers, J. M., Thomashow, L. S. and Weller, D. M.. 2000. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 66:1939-1946. https://doi.org/10.1128/AEM.66.5.1939-1946.2000
- Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
- Thomashow, L. S., Weller, D. M., Bonsall, R. F. and Pierson, L. S. 1990. Production of the antibiotic phenazine 1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56:908-912.
- Threlfall, R. J. 1972. Effect of pentachloronitrobenzene (PCNB) and other chemicals on sensitive and PCNB-resistant strains of Aspergillus nidulans. J. Gen. Microbiol. 71:173-180. https://doi.org/10.1099/00221287-71-1-173
- Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
- Weller, D. M., Raaijmakers, J. M., McSpadden-Gardener, B. B. and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309-348. https://doi.org/10.1146/annurev.phyto.40.030402.110010
- Woodruff, H. B. 1988. Natural products from microorganisms. Science 208:1225-1229.
- Wratten, S. J., Wolfe, M. S., Anderson, R. J. and Faukner, D. J. 1977. Antibiotic metabolites from a marine pseudomonad. Antimicrob. Agents Chemother. 11:411-414. https://doi.org/10.1128/AAC.11.3.411
Cited by
- Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae vol.32, pp.3, 2016, https://doi.org/10.5423/PPJ.NT.12.2015.0274
- Prospects for Biological Soilborne Disease Control: Application of Indigenous Versus Synthetic Microbiomes vol.107, pp.3, 2017, https://doi.org/10.1094/PHYTO-09-16-0330-RVW
- Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies vol.37, pp.2, 2017, https://doi.org/10.3109/07388551.2015.1130683