• Title/Summary/Keyword: In vitro Rumen Fermentation

Search Result 251, Processing Time 0.022 seconds

Effects of Storage Duration and Temperature on the Chemical Composition, Microorganism Density, and In vitro Rumen Fermentation of Wet Brewers Grains

  • Wang, B.;Luo, Y.;Myung, K.H.;Liu, J.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.832-840
    • /
    • 2014
  • This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures ($5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$) and four durations (0, 1, 2, and 3 d) were arranged in a $4{\times}4$ factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as $25^{\circ}C$ and $35^{\circ}C$. Nutrients contents decreased concomitantly with prolonged storage times (p<0.01) and increasing temperatures (p<0.01). The amount of yeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds $35^{\circ}C$, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above $35^{\circ}C$ during summer.

Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity

  • Soriano, Alvin P.;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Jeong, Chang Dae;Bae, Gui Seck;Chang, Moon Baek;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1562-1570
    • /
    • 2014
  • The effects of Lactobacillus mucosae (L. mucosae), a potential direct fed microbial previously isolated from the rumen of Korean native goat, on the rumen fermentation profile of brewers grain were evaluated. Fermentation was conducted in serum bottles each containing 1% dry matter (DM) of the test substrate and either no L. mucosae (control), 1% 24 h broth culture of L. mucosae (T1), or 1% inoculation with the cell-free culture supernatant (T2). Each serum bottle was filled anaerobically with 100 mL of buffered rumen fluid and sealed prior to incubation for 0, 6, 12, 24, and 48 h from which fermentation parameters were monitored and the microbial diversity was evaluated. The results revealed that T1 had higher total gas production (65.00 mL) than the control (61.33 mL) and T2 (62.00 mL) (p<0.05) at 48 h. Consequently, T1 had significantly lower pH values (p<0.05) than the other groups at 48 h. Ammonia nitrogen ($NH_3$-N), individual and total volatile fatty acids (VFA) concentration and acetate:propionate ratio were higher in T1 and T2 than the control, but T1 and T2 were comparable for these parameters. Total methane ($CH_4$) production and carbon dioxide ($CO_2$) were highest in T1. The percent DM and organic matter digestibilities were comparable between all groups at all times of incubation. The total bacterial population was significantly higher in T1 (p<0.05) at 24 h, but then decreased to levels comparable to the control and T2 at 48 h. The denaturing gradient gel electrophoresis profile of the total bacterial 16s rRNA showed higher similarity between T1 and T2 at 24 h and between the control and T1 at 48 h. Overall, these results suggest that addition of L. mucosae and cell-free supernatant during the in vitro fermentation of dried brewers grain increases the VFA production, but has no effect on digestibility. The addition of L. mucosae can also increase the total bacterial population, but has no significant effect on the total microbial diversity. However, inoculation of the bacterium may increase $CH_4$ and $CO_2$ in vitro.

Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations

  • Lee, Shin Ja;Jeong, Jin Suk;Shin, Nyeon Hak;Lee, Su Kyoung;Kim, Hyun Sang;Eom, Jun Sik;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1864-1872
    • /
    • 2019
  • Objective: This study was conducted to evaluate the effects of Ecklonia stolonifera (E. stolonifera) extract addition on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Methods: One cannulated Holstein cow ($450{\pm}30kg$) consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (09:00 and 17:00) at 2% of body weight with free access to water and mineral block were used as rumen fluid donors. In vitro fermentation experiment, with timothy hay as substrate, was conducted for up to 72 h, with E. stolonifera extract added to achieve final concentration 1%, 3%, and 5% on timothy hay basis. Results: Administration of E. stolonifera extract to a ruminant fluid-artificial saliva mixture in vitro increased the total gas production. Unexpectedly, E. stolonifera extracts appeared to increase both methane emissions and hydrogen production, which is contrasts with previous observations with brown algae extracts used under in vitro fermentation conditions. Interestingly, real-time polymerase chain reaction indicated that as compared with the untreated control the ciliate-associated methanogen and Fibrobacter succinogenes populations decreased, whereas the Ruminococcus flavefaciens population increased as a result of E. stolonifera extract supplementation. Conclusion: E. stolonifera showed no detrimental effect on rumen fermentation characteristics and microbial population. Through these results E. stolonifera has potential as a viable feed supplement to ruminants.

Effect of Intercropped Corn and Soybean Silage on Nutritive Values, in vitro Ruminal Fermentation, and Milk Production of Holstein Dairy Cows

  • Kang, Juhui;Song, Jaeyong;Marbun, Tabita Dameria;Kwon, Chan Ho;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • This study was conducted to examine the effect of corn (Zea mays L.) - soybean (Glycine max L.) silage prepared by intercropping method on the nutritive value of the silage, in vitro rumen fermentation characteristics, dry matter degradability, as well as milk yield and milk composition of dairy cows. In a couple of experiments intercropped corn-soybean silage (CSBS) was compared with corn silage (CS) and/or Italian ryegrass hay (IRG). Numerically, CSBS had higher crude protein, ether extract, and lactic acid contents compared to CS. In vitro rumen fermentation analysis demonstrated that up to a 24-h incubation period, both CS and CSBS showed higher total gas production, ammonia N concentration, and dry matter degradability compared to IRG (p<0.05). The investigation on animals was conducted in a commercial dairy farm located in Gyeongju, South Korea, employing 42 Holstein cows that were divided into 2 group treatments: CS and CSBS in a completely randomized design. Although no significant difference was observed in milk yield, animals fed on CSBS showed significantly higher milk protein (p<0.05) and milk fat content (p<0.01), compared to animals fed on CS. Taken together, our findings indicate that corn-soybean silage that is cultivated, harvested, and prepared through intercropping can improve the protein content of the silage, and can also enhance in vitro rumen fermentation, dry matter degradability, and performance of dairy cattle.

Anti-inflammatory Effect of Natural Plant Extracts on in vitro Rumen Fermentation and Methane Emission (천연 식물 추출물의 항염 효과가 in vitro 반추위 발효성상과 메탄 생성에 미치는 영향)

  • Lee, Shin Ja;Lee, Su Kyoung;Lim, Jung Hwa;Son, Chang Jun;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.51 no.4
    • /
    • pp.97-109
    • /
    • 2017
  • This study was conducted to investigate the effects of anti-inflammatory plant extracts on the in vitro rumen fermentation characteristics and methane emission. Anti-inflammatory plant extracts from Morus bombycis Koidz, Mallotus japonicus L., Morus alba L., Paulownia coreana Uyeki, Isodon japonicus Hara and Ginkgo biloba L. were used in the study. The ruminal fluid(5 mL), McDougall buffer(10 mL), timothy as a substrate(0.3 g) and each anti-inflammatory plant extract(5% of substrate) were dispensed anaerobically into 50mL serum bottle. The mixtures were incubated for 3, 9, 12, 24, 48 and 72h at $39^{\circ}C$ without shaking. Supplementation of the anti-inflammatory plant extracts did not effects characteristics(pH, digestibility of dry matter, glucose concentration, ammonia concentration, protein concentration, VFA) on rumen fermentation. Total gas was showed a different pattern depending on treatments. Carbon dioxide was significantly(p<0.05) higher in Morus alba and Isodon japonicus than in control at 48h. Methane was significantly(p<0.05) lower in treatment than in control at initial fermentation. However the more incubation time was increased, the more methane emission was higher in treatment than in control. The concentrations of polyphenol and flavonoid were higher in Ginkgo biloba. In conclusion, supplementation of the anti-inflammatory plant extracts did not effect on rumen fermentation and methane emission was decreased in initial fermentation.

Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor

  • Sakthivel, Pillanatham Civalingam;Kamra, Devki Nandan;Agarwal, Neeta;Chaudhary, Chandra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.812-817
    • /
    • 2012
  • Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet) were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (p<0.01) methane production (9.56, 7.93 vs. 21.76 ml/g DM; 12.20, 10.42 vs. 25.76 ml/g DM; 15.49, 12.33 vs. 26.86 ml/g DM) in LC, MC and HC diets, respectively. Inclusion of nitrate at both 5 and 10 mM also reduced (p<0.01) gas production in all the diets, but in vitro true digestibility (IVTD) of feed reduced (p<0.05) only in LC and MC diets. In the medium at 10 mM sodium nitrate level, there was 0.76 to 1.18 mM of residual nitrate and nitrite (p<0.01) also accumulated. In an attempt to eliminate residual nitrate and nitrite in the medium, the nitrate reducing bacteria were isolated from buffalo adapted to nitrate feeding and introduced individually (3 ml containing 1.2 to $2.3{\times}10^6$ cfu/ml) into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce in vitro methane emissions.

Replacement of corn with rice grains did not alter growth performance and rumen fermentation in growing Hanwoo steers

  • Yang, Sungjae;Kim, Byeongwoo;Kim, Hanbeen;Moon, Joonbeom;Yoo, Daekyum;Baek, Youl-Chang;Lee, Seyoung;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.230-235
    • /
    • 2020
  • Objective: This study was realized to evaluate the nutritional value of rice grains as a replacement for corn grains in the diet of growing Hanwoo steers. Methods: Two experimental diets were prepared: i) Corn total mixed ration (TMR) consisting of 20% corn grains and ii) Rice TMR consisting of 20% rice grains, in a dry matter (DM) basis. These treatments were used for in vitro rumen fermentation and in vivo growth trials. In the rumen fermentation experiment, the in vitro DM digestibility (IVDMD), in vitro crude protein digestibility (IVCPD), in vitro neutral detergent fiber digestibility, pH, ammonia nitrogen, and volatile fatty acids (VFA) were estimated at 48 h, and the gas production was measured at 3, 6, 12, 24, and 48 h. Twenty four growing Hanwoo steers (9 months old; body weight [BW]: 259±13 kg) were randomly divided into two treatment groups and the BW, dry matter intake (DMI), average daily gain (ADG), and feed conversion ratio (FCR) were measured. Results: The in vitro experiment showed that the IVDMD, IVCPD, and VFA production of the Rice TMR were higher than those of the Corn TMR (p<0.05). The growth trial showed no differences (p>0.05) in the final BW, ADG, DMI, and FCR between the two TMRs. Conclusion: The use of rice grains instead of corn grains did not exhibit any negative effects on the rumen fermentation or growth performance, thereby rice grains with a DM of less than 20% could be used as a starch source in the diet of growing steers.

Effects of Non-ionic or Zwitterionic Surfactant on in vitro Digestibility of Rice Straw and Growth of Rumen Mixed Microorganisms. (비이온성 및 양쪽 이온성 계면활성제 첨가가 반추위 혼합 미생물의 성장과 볏짚의 in vitro 소화에 미치는 영향)

  • Lee, Shin-Ja;Kim, Wan-Young;Moon, Yea-Hwang;Kim, Hyeon-Shup;Kim, Kyoung-Hoon;Ha, Jong-Kyu;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.515-521
    • /
    • 2008
  • This experiment was conducted to investigate effects of non-ionic or zwitterionic (+/-) surfactants on digestibility of rice straw, and changes of growth of rumen mixed microbes, pH, and gas production during in vitro fermentation. Also, during in vitro ruminal fermentation, microbial attachment on rice straw was investigated using scanning electron microscopy (SEM). Tween 80 or SOLFA-850 for non-ionic surfactant (NIS), and 3-(Dodecyldimethylammonio) propanesulfanate (DDAP) for zwitterionic surfactant (ZIS) was supplemented by 0.05% and 0.1% in Dehority's artificial medium containing Holtein rumen fluid, respectively, and the substrate for fermentation was rice straw passed through 1 mm screen. The experiment was composed of 7 treatments (two levels of two NISs, two levels of a ZIS) including the control, and 6, 12, 24, 48 and 72 hr of fermentation time with 3 replications per treatment. Treatment of Tween 80 increased in vitro DM digestibilities during 48 hr and 72 h post fermentations compared to the other treatments, whereas treatment of DDAP as a ZIS resulted in decreased DM digestibility than that of the control from 24 hr post fermentation (P<0.05). Gas production in vitro was greater (P<0.05) with addition of NIS than the control or ZIS, and increased as fermentation time elapsed. Rumen mixed microbial growth was greatest with addition of Tween 80 as NIS, and lowest when DDAP as ZIS was supplemented to the fermentation tube (P<0.05). In SEM observation, rumen microbial population attached on rice straw particle was greater with addition of NIS, but was less with addition ZIS compared with the control. In conclusion we could not found any positive effects of ZIS surfactants on rumunal fermentation characteristics and rumen microbial growth rates.

Effects of Dietary Acidogenicity Values on Rumen Fermentation Characteristics and Nutrients Digestibility

  • Choi, Y.J.;Lee, Sang S.;Song, J.Y.;Choi, N.J.;Sung, H.G.;Yun, S.G.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1625-1633
    • /
    • 2003
  • This study was conducted to observe effects of dietary acidogenicity value (AV) on rumen fermentation characteristics and nutrients digestibility. The AV of feedstuffs was based on the dissolution of Ca from $CaCO_3$ powder added at the end of a 24 h in vitro fermentation. Three diets were formulated to be iso-energetic and iso-nitrogenous with different AV. Two experiments were involved in this study. In experiment 1, it appears that pH, $NH_3-N$ concentration and A:P ratio tended to decrease, but gas production, VFA production and DM disappearance tended to increase with increasing dietary AV. In experiment 2, the rumen pH tended to decrease in order of high AV>medium AV>low AV treatment, respectively. There were no significant effects of dietary AV on $NH_3-N$ concentration, enzyme activity and nutrient digestibility. In addition, total VFA and individual VFA concentrations tended to increase with increasing dietary AV without significance. In fact, we hypothesized that different dietary AV would affect rumen fermentation and nutrients digestibility because dietary AV was adjusted with fermentable carbohydrate sources. The present results indicate that differences in dietary AV between treatments were too small to affect rumen fermentation and its effects were minimal.