• 제목/요약/키워드: In vitro RNA synthesis

검색결과 111건 처리시간 0.021초

금은화(金銀花) 열수 추출물이 피부 미백(美白)에 미치는 영향 (Effects of Hot Water Extracts from Lonicera Japonica Flos Extracts on whitening using B16F10 cell lines)

  • 우배언;김혜화;이유림;박수연;정민영;최정화
    • 한방안이비인후피부과학회지
    • /
    • 제30권2호
    • /
    • pp.38-50
    • /
    • 2017
  • Objectives : This study was designed to investigate effects of Lonicera Flos Extracts(LFE) on whitening using B16F10 cell lines. Methods : In this experiment, we observed effects of LFE on cell viability, inhibitory effects of melanin synthesis, inhibitory effect on tyrosinase, tyrosinase activity, superoxide dismutase(SOD)-like activity and mRNA expression. Results : In results, more than $2000{\mu}g/ml$ of LFE treated group showed lowered cell viability rates significantly compared to albutin treated group. More than $2000{\mu}g/ml$ of LFE treated groups were lower levels of melanin synthesis. Inhibitory effects of melanin production showed in $1000{\mu}g/ml$ of LFE treated group. $1,000{\mu}g/ml$ of LFE treated group significantly suppressed tyrosinase activities in vitro. LFE and albutin treated group significantly decreased tyrosinase activity compared to non treated group. SOD-like activity of LFE treated group was lower than vitamin C treated group but increased depending on concentration. $500{\mu}g/ml$ of LFE treated group and $1,000{\mu}g/ml$ of LFE treated group was significantly increased. Tyrosinase mRNA expression of ${\alpha}$-MSH and LFE $250{\mu}g/ml$ treated group significantly decreased compared to ${\alpha}$-MSH treated group. Conclusions : These results suggest that LFE can inhibit melanin synthesis through inhibitory action on tyrosinase activity. And LFE suppressed tyrosinase activities B16F10 cells significantly. So I suggest LFE can apply to whitening.

생쥐 초기배아의 유전자 활성에 미치는 Protein Kinase Inhibitors의 영향 (Effects of Protein Kinase Inhibitors on Gene Activation of Early Embryos in Mouse)

  • 이정은;채영규;배인하;윤용달;김문규
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제22권2호
    • /
    • pp.191-201
    • /
    • 1995
  • Transcriptional activation of the embryonic genome initiates at 2-cell stage in mouse embryo and is characterized by the synthesis of TRC which is restricted to 2-cell stage. To investigate the roles of various protein kinases on the embryonic gene activation, the effects of protein kinase inhibitors on in vitro development and protein synthetic profiles of the early mouse embryos were examinded. None of ${\alpna}-amanitin$ which is a mRNA synthetic inhibitor, H8 which is a PKA inhibitor, and H7 which is a PKC inhibitor, affected on first cleavage of mouse 1-cell embryos in vitro. However, all of these drugs inhibited the second cleavage. When the drugs were removed following treatment for 6 hours, H8 or H7 treatment showed little inhibition on subsequent development of 1-cell embryos to 2-cell stage or further. In contrast, ${\alpna}-amanitin$ irreversibly inhibited the development of 1-cell embryos to 2-cell stage following removal of the drug. Genistein, a TPK inhibitor, inhibited both the first cleavage of 1-cell embryos and the second cleavage of 2-cell embryos, suggesting that TPK activity may be important during the early cleavages. All of the above four drugs inhibited TRC synthesis as shown by the fluorographic analysis of $[^{35}S]-Met$ labeled protein profiles. When late 1-cell embryos were treated with H7 and analyzed synthetic patterns of $[^{35}S]-Met$ labeled protein, the quantitative differences of protein synthesis on SDS-PAGE appeared on 77 kD and 33 kD region at $32{\sim}38$ hours post hCG. From these studies, transcriptional activation of embryonic genome is not essenting to the mouse 1-cell embryos to develop to 2-cell stage. Hawever, TPK activity is reguisite for both the first cleavage and second cleavage. Similarly, both PKC and PKA activities are required for the second cleavage of mouse embryos, but not for the first cleavage.

  • PDF

Bacteriophage T7의 유전자 복제기작에 관한 생화학적, 분자생물학적 특성 연구 (Biochemical and Molecular Biological Studies on the DNA Replication of Bacteriophage T7)

  • KIM Young Tae
    • 한국수산과학회지
    • /
    • 제28권2호
    • /
    • pp.209-218
    • /
    • 1995
  • 본 연구에서는 유전자 복제기작을 생화학적, 분자생물학적 방법을 사용하여 bacteriphage T7을 대상으로 연구하였다. Bacteriophage T7의 유전자 복제, 재조합, 수선시 필수 단백질로 작용하는 gene 2.5 단백질의 생체내 기능에 대한 유전학적 연구와 단백질을 분리 정제하여 복제 단백질들과의 상호작용에 대한 연구를 수행하였다. 연구결과 gene 2.5 단백질은 DNA복제시 필수 구성단백질로 작용하며, 복제과정에서 유전자 복제에 관여하는 핵심 단백질들인 DNA polymerase, helicase/primase와 직접 단백질-단백질 상호 협동 작용을 하는 r것을 증명하였다. 특히 gene 2.5 단백질의 C-terminal domain이 절편된 변이체의 경우 복제 단백질들과 상호작용이 결여되었다. 따라서 C-terminal domain이 gene 2.5 단백질의 기능에 필수적으로 관여함을 입증하였다.

  • PDF

Functional Characterization of the C-Terminus of YhaV in the Escherichia coli PrlF-YhaV Toxin-Antitoxin System

  • Choi, Wonho;Yoon, Min-Ho;Park, Jung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.987-996
    • /
    • 2018
  • Bacterial programmed cell death is regulated by the toxin-antitoxin (TA) system. YhaV (toxin) and Pr1F (antitoxin) have been recently identified as a type II TA system in Escherichia coli. YhaV homologs have conserved active residues within the C-terminus, and to characterize the function of this region, we purified native YhaV protein (without denaturing) and constructed YhaV proteins of varying lengths. Here, we report a new low-temperature method of purifying native YhaV, which is notable given the existing challenges of purifying this highly toxic protein. The secondary structures and thermostability of the purified native protein were characterized and no significant structural destruction was observed, suggesting that the observed inhibition of cell growth in vivo was not the result of structural protein damage. However, it has been reported that excessive levels of protein expression may result in protein misfolding and changes in cell growth and mRNA stability. To exclude this possibility, we used an [$^{35}S$]-methionine prokaryotic cell-free protein synthesis system in vitro in the presence of purified YhaV, and two C-terminal truncated forms of this protein (YhaV-L and YhaV-S). Our results suggest that the YhaV C-terminal region is essential for mRNA interferase activity, and the W143 or H154 residues may play an analogous role to Y87 of RelE.

Synthesis and Biological Evaluation of Novel IM3829 (4-(2-Cyclohexylethoxy)aniline) Derivatives as Potent Radiosensitizers

  • Ahn, Jiyeon;Nam, Ky-Youb;Lee, Sae-Lo-Oom;Ryu, Hwani;Choi, Hyun Kyung;Song, Jie-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3623-3626
    • /
    • 2014
  • Nuclear factor-erythroid 2-related factor 2 (Nrf2) regulates the expression of over 200 genes of antioxidant and phase II drug-metabolizing enzymes, and is highly expressed in non-small cell lung cancer (NSCLC). Nine derivatives of 4-(2-cyclohexylethoxy)aniline were designed. Our previous study demonstrated that IM3829 increases radiosensitivity of several lung cancer cells in vitro and in vivo. Here, biological effects of IM3829 derivatives (2a-2i) were evaluated. Compound 2g derivative effectively inhibits mRNA and protein expression of Nrf2 and HO-1. In addition, we observed over two fold enhancement in IR-induced cell death, from $2.90{\pm}0.22$ to $6.02{\pm}0.87$, in H1299 cancer cell-line. Among the nine derivatives, compound 2g derivative exhibited the highest enhancement of radiosensitizing effect via inhibition of Nrf2 activity.

간암치료신약개발 및 이의 제제화 연구 (Replication of Hepatitis B Virus is repressed by tumor suppressor p53)

  • 이현숙;허윤실;이영호;김민재;김학대;윤영대;문홍모
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.178-178
    • /
    • 1994
  • Hepatitis B Virus (HBV) is a DNA virus with a 3.2kb partially double-stranded genome. The life cycle of the virus involves a reverse transcription of the greater than genome length 3.5kb mRNA. This pegenomic RNA contains all the genetic information encoded by the virus and functions as an intermediate in viral replication. Tumor suppressor p53 has previously been shown to interact with the X-gene product of the HBV, which led us to hypothesize that p53 may act as a negative regulator of HBV replication and the role of the X-gene product is to overcome the p53-mediated restriction. As a first step to prove the above hypothesis, we tested whether p53 represses the propagation of HBV in in vitro replication system. By transient cotransfection of the plasmid containing a complete copy of the HBV genome and/or the plasmid encoding p53, we found that the replication of HBV is specifically blocked by wild-type p53. The levels of HBV DNA, HBs Ag and HBc/e Ag secreted in cell culture media were dramatically reduced upon coexpresion of wild-type p53 but not by the coexpression of the mutants of p53 (G154V and R273L). Furthermore, levels of RNAs originated from HBV genome were repressed more than 10 fold by the cotransfection of the p53 encoding plasmid. These results clearly states that p53 is a nesative regulator of the HBV replication. Next, to addresss the mechanism by which p53 represses the HBV replication, we performed the transient transfection experiments employing the pregenomic/core promoter-CAT(Chloramphenicol Acetyl Transferase) construct as a reporter. Cotransfection of wild-type p53 but not the mutant p53 expression plasmids repressed the CAT activity more than 8 fold. Integrating the above results, we propose that p53 represses the replication of HBV specifically by the down-regulation of the pregenomic/core promoter, which results in the reduced DNA synthesis of HBV. Currently, the mechanism by which HBV overcomes the observed p53-mediated restriction of replication is tinder investigation.

  • PDF

Antioxidant Activity and Anti-wrinkle Effects of Aceriphyllum rossii Leaf Ethanol Extract

  • Ha, Bi Gyeon;Park, Min Ah;Lee, Chae Myoung;Kim, Young Chul
    • Toxicological Research
    • /
    • 제31권4호
    • /
    • pp.363-369
    • /
    • 2015
  • We evaluated the antioxidant activity and anti-wrinkle effects of Aceriphyllum rossii leaf ethanol extract (ARLEE) in vitro using human dermal fibroblasts. The total polyphenol and flavonoid contents of ARLEE were 578.6 and 206.3 mg/g, respectively. At a concentration of $250{\mu}g/mL$, the electron-donating ability of ARLEE was 87.1%. In comparison with the vehicle, ARLEE treatment at $100{\mu}g/mL$ significantly increased type I procollagen synthesis (p < 0.01) by 50.7%. In vitro ARLEE treatment (10 mg/mL) inhibited collagenase and elastase activity by 97.1% and 99.2%, respectively. Compared with the control, ascorbic acid treatment at $100{\mu}g/mL$ significantly decreased matrix metalloproteinase (MMP)-1 protein expression (p < 0.01) by 37.0%. ARLEE treatment at $50{\mu}g/mL$ significantly decreased MMP-1 protein expression (p < 0.01) by 46.1%. Ascorbic acid and ARLEE treatments at $100{\mu}g/mL$ significantly decreased MMP-1 mRNA expression (p < 0.01) by 26.1% and 36.1%, respectively. From these results, we conclude that ARLEE has excellent antioxidant activity and even better anti-wrinkle effects than ascorbic acid in human dermal fibroblasts. These results suggest that ARLEE could be used in functional cosmetics for the prevention or alleviation of skin wrinkles induced by ultraviolet rays.

Anticancer Potential of an Ethanol Extract of Saussurea Involucrata against Hepatic Cancer Cells in vitro

  • Byambaragchaa, Munkhzaya;Cruz, Joseph Dela;Kh, Altantsetseg;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7527-7532
    • /
    • 2014
  • Saussurea involucrata is a Mongolian medicinal plant well known for its effects in promoting blood circulation, and anti-inflammation and analgesic functions. Earlier studies reported that Saussurea involucrata has anticancer activity. The purpose of this study was to confirm the anticancer activity of an ethanol extract of Saussurea involucrata against hepatic cancer and elucidate its mechanisms of action. Hepatocellular carcinoma cells were tested in vitro for cytotoxicity, AO/EB staining for apoptotic cells, apoptotic DNA fragmentation and cell cycle distribution in response to Saussurea involucrata extract (SIE). The mRNA expression of caspase-3,-9 and Cdk2 and protein expression of caspase-3,-9, PARP, XIAP, Cdk2 and p21 were analyzed through real time PCR and Western blotting. Treatment with SIE inhibited HepG2 cell proliferation dose- and time-dependently, but SIE only exerted a modest cytotoxic effect on a viability of Chang human liver cells. Cells exposed to SIE showed typical hallmarks of apoptotic cell death. Cell cycle analysis revealed that SIE caused G1-phase arrest in HepG2 cells. In conclusion, Saussurea involucrata ethanol extract has potential cytotoxic and apoptotic effects on human hepatocellular carcinoma cells. Its mechanism of action might be associated with the inhibition of DNA synthesis, cell cycle (G1) arrest and apoptosis induction through up-regulation of the protein expressions of caspase-3,-9 a nd p21, degradation of PARP and down-regulation of the protein expression of Cdk2 and XIAP.

Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells

  • Bae, Hyun Cheol;Park, Hee Jung;Wang, Sun Young;Yang, Ha Ru;Lee, Myung Chul;Han, Hyuk-Soo
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.271-278
    • /
    • 2018
  • Background: The chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors, including oxygen tensions, growth factors, and cytokines. Evidences have suggested that low oxygen tension seems to be an important regulatory factor in the proliferation and chondrogenic differentiation in various MSCs. Recent studies report that synovium-derived mesenchymal stem cells (SDSCs) are a potential source of stem cells for the repair of articular cartilage defects. But, the effect of low oxygen tension on the proliferation and chondrogenic differentiation in SDSCs has not characterized. In this study, we investigated the effects of hypoxia on proliferation and chondrogenesis in SDSCs. Method: SDSCs were isolated from patients with osteoarthritis at total knee replacement. To determine the effect of oxygen tension on proliferation and colony-forming characteristics of SDSCs, A colony-forming unit (CFU) assay and cell counting-based proliferation assay were performed under normoxic (21% oxygen) or hypoxic (5% oxygen). For in vitro chondrogenic differentiation, SDSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis. qRT-PCR, histological assay, and glycosoaminoglycan assays were determined to assess chondrogenesis. Results: Low oxygen condition significantly increased proliferation and colony-forming characteristics of SDSCs compared to that of SDSCs under normoxic culture. Similar pellet size and weight were found for chondrogensis period under hypoxia and normoxia condition. The mRNA expression of types II collagen, aggrecan, and the transcription factor SOX9 was increased under hypoxia condition. Histological sections stained with Safranin-O demonstrated that hypoxic conditions had increased proteoglycan synthesis. Immunohistochemistry for types II collagen demonstrated that hypoxic culture of SDSCs increased type II collagen expression. In addition, GAG deposition was significantly higher in hypoxia compared with normoxia at 21 days of differentiation. Conclusion: These findings show that hypoxia condition has an important role in regulating the synthesis ECM matrix by SDSCs as they undergo chondrogenesis. This has important implications for cartilage tissue engineering applications of SDSCs.

Doxorubicin Attenuates Free Fatty Acid-Induced Lipid Accumulation via Stimulation of p53 in HepG2 Cells

  • Chawon Yun;Sou Hyun Kim;Doyoung Kwon;Mi Ran Byun;Ki Wung Chung;Jaewon Lee;Young-Suk Jung
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.94-103
    • /
    • 2024
  • Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in the liver, and there is a global increase in its incidence owing to changes in lifestyle and diet. Recent findings suggest that p53 is involved in the development of non-alcoholic fatty liver disease; however, the association between p53 expression and the disease remains unclear. Doxorubicin, an anticancer agent, increases the expression of p53. Therefore, this study aimed to investigate the role of doxorubicin-induced p53 upregulation in free fatty acid (FFA)-induced intracellular lipid accumulation. HepG2 cells were pretreated with 0.5 ㎍/mL of doxorubicin for 12 h, followed by treatment with FFA (0.5 mM) for 24 h to induce steatosis. Doxorubicin pretreatment upregulated p53 expression and downregulated the expression of endoplasmic reticulum stress- and lipid synthesis-associated genes in the FFA -treated HepG2 cells. Additionally, doxorubicin treatment upregulated the expression of AMP-activated protein kinase, a key modulator of lipid metabolism. Notably, siRNA-targeted p53 knockdown reversed the effects of doxorubicin in HepG2 cells. Moreover, doxorubicin treatment suppressed FFA -induced lipid accumulation in HepG2 spheroids. Conclusively, these results suggest that doxorubicin possesses potential application for the regulation of lipid metabolism by enhance the expression of p53 an in vitro NAFLD model.