• Title/Summary/Keyword: In vitro Gas Production

Search Result 262, Processing Time 0.024 seconds

Studies on In situ and In vitro Degadabilities, Microbial Growth and Gas Production of Rice, Barley and Corn (쌀, 보리, 옥수수의 반추위내 In situ 및 In vitro 분해율, 미생물 성장과 Gas 발생량에 대한 연구)

  • 이상민;강태원;이신자;옥지운;문여황;이성실
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.699-708
    • /
    • 2006
  • Ground rice, barley and corn were fed separately to the ruminally cannulated Hanwoo (Korean native cattle) for comparing their in situ and in vitro degradabilities, microbial growth, pH and gas production. It has been found that nearly all the dry matter (DM) and organic matter (OM) in barley and rice disappeared during 24 hr suspension in the rumen, but those in corn were only reduced by around 67%. Water soluble DM and OM fractions(‘a’), ranked from highest to lowest was corn, then rice and finally barley, but the order was reversed for content ‘b’, degradable fraction during time ‘t’. Judging by the degradation parameter of ‘b’ fraction, degradation rates per hour of DM and OM for barley were 38.3% and 37.2% respectively, significantly higher than those for rice (7.7% and 5.6%) and corn (4.1% and 1.3%). In general, results obtained from in vitro degradability of DM and OM were lower than those from in situ trials, but the ranking order of degradability was in agreement between both trials. In particular, ground rice has relatively lower in vitro microbial growth than corn or barley, but exhibited higher gas production. In addition, in vitro microbial growth of ground rice increased with up to 12 hr of incubation period, thereafter experienced a decrease with extended incubation time. pH of in vitro solution of rice decreased following 9 hr of incubation but gas production increased rapidly during the same period. From the results of DM and OM degradabilities and pH changes of in vitro solution with incubation time, it is concluded that rice represents a good source of energy for stability of rumen fermentation.

Effects of Non-ionic Surfactant Tween 80 on the in vitro Gas Production, Dry Matter Digestibility, Enzyme Activity and Microbial Growth Rate by Rumen Mixed Microorganisms (비이온성 계면활성제 Tween 80의 첨가가 반추위 혼합 미생물에 의한 in vitro 가스발생량, 건물소화율, 효소활력 및 미생물 성장율에 미치는 영향)

  • Lee, Shin-Ja;Kim, Wan-Young;Moon, Yea-Hwang;Kim, Hyeon-Shup;Kim, Kyoung-Hoon;Ha, Jong-Kyu;Lee, Sung-Sil
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1660-1668
    • /
    • 2007
  • The non-ionic surfactant (NIS) Tween 80 was evaluated for its ability to influence invitro cumulative gas production, dry matter digestibility, cellulolytic enzyme activities, anaerobic microbial growth rates, and adhesion to substrates by mixed rumen microorganisms on rice straw, alfalfa hay, cellulose filter paper and tall fescue hay. The addition of NIS Tween 80 at a level of 0.05% increased significantly (P<0.05) in vitro DM digestibility, cumulative gas production, microbial growth rate and cellulolytic enzyme activity from all of substrates used in this study. In vitro cumulative gas production from the NIS-treated substrates; rice straw, alfalfa hay, filter paper and tall fescue hay was significantly (P<0.05) improved by 274.8, 235.2, 231.1 and 719.5% compared with the control, when substrates were incubated for 48 hr in vitro. The addition of 0.05% NIS Tween 80 to cultures growing on alfalfa hay resulted in a significant increase in CMCase (38.1%), xylanase (121.4%), Avicelase (not changed) and amylase (38.2%) activities after 36 h incubation. These results indicated that the addition of 0.05% Tween 80 could greatly stimulate the release of some kinds of cellulolytic enzymes without decreasing cell growth rate in contrast to trends reported with aerobic microorganism. Our SEM observation showed that NIS Tween. 80 did not influence the microbial adhesion to substrates used in the study. Present data clearly show that improved gas production, DM digestibility and cellulolytic enzyme activity by Tween 80 is not due to increased bacterial adhesion on the substrates.

Relationship between the Methane Production and the CNCPS Carbohydrate Fractions of Rations with Various Concentrate/roughage Ratios Evaluated Using In vitro Incubation Technique

  • Dong, Ruilan;Zhao, Guangyong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1708-1716
    • /
    • 2013
  • The objective of the trial was to study the relationship between the methane ($CH_4$) production and the Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate fractions of feeds for cattle and the suitability of CNCPS carbohydrate fractions as the dietary variables in modeling the $CH_4$ production in rumen fermentation. Forty-five rations for cattle with the concentrate/roughage ratios of 10:90, 20:80, 30:70, 40:60, and 50:50 were formulated as feed samples. The Menke and Steingass's gas test was used for the measurement of $CH_4$ production. The feed samples were incubated for 48 h and the $CH_4$ production was analyzed using gas chromatography. Statistical analysis indicated that the $CH_4$ production (mL) was closely correlated with the CNCPS carbohydrate fractions (g), i.e. CA (sugars); $CB_1$ (starch and pectin); $CB_2$ (available cell wall) in a multiple linear pattern: $CH_4=(89.16{\pm}14.93)$ $CA+(124.10{\pm}13.90)$ $CB_1+(30.58{\pm}11.72)$ $CB_2+(3.28{\pm}7.19)$, $R^2=0.81$, p<0.0001, n = 45. Validation of the model using 10 rations indicated that the $CH_4$ production of the rations for cattle could accurately be predicted based on the CNCPS carbohydrate fractions. The trial indicated that the CNCPS carbohydrate fractions CA, $CB_1$ and $CB_2$ were suitable dietary variables for predicting the $CH_4$ production in rumen fermentation in vitro.

Indirect Estimation of CH4 from Livestock Feeds through TOCs Evaluation

  • Kim, M.J.;Lee, J.S.;Kumar, S.;Rahman, M.M.;Shin, J.S.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.496-501
    • /
    • 2012
  • Thirty-five available feeds were fermented in vitro in order to investigate their soluble total organic carbon (TOCs) and methane ($CH_4$) production rate. A fermentation reactor was designed to capture the $CH_4$ gas emitted and to collect liquor from the reactor during in vitro fermentation. The results showed that $CH_4$ production rate greatly varied among feeds with different ingredients. The lowest $CH_4$-producing feeds were corn gluten feed, brewer's grain, and orchard grass among the energy, protein, and forage feed groups, respectively. Significant differences (p<0.05) were found in digestibility, soluble total organic carbon (TOCs), and $CH_4$ emissions among feeds, during 48 h of in vitro fermentation. Digestibility and TOCs was not found to be related due to different fermentation pattern of each but TOCs production was directly proportional to $CH_4$ production (y = 0.0076x, $r^2$ = 0.83). From this in vitro study, TOCs production could be used as an indirect index for estimation of $CH_4$ emission from feed ingredients.

Chemical Composition, Phenolic Concentration and In Vitro Gas Production Characteristics of Selected Acacia Fruits and Leaves

  • Abdulrazak, S.A.;Orden, E.A.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.935-940
    • /
    • 2000
  • The objective of this study was to evaluate the nutritive value of selected fruits (pods and seeds) and leaves of acacia tree species namely; Acacia nubica (nubica), Acacia tortilis (tortilis) and Acacia brevispica (brevispica), Acacia reficiens (reficiens) and Acacia senegal (senegal). A wide variability in chemical composition, polyphenolics and gas production was recorded. The crude protein (CP) ranged from 131 to 238 g/kg DM. Neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin (ADL) were higher in senegal and significantly different (p<0.05) from other species. The nitrogen bound to fiber tended to be higher in leaves than the fruits, ranging from 2.6 to 11.3 g/kg NDF and 1.6 to 3.2 g/kg ADF. The leaves of reficiens and senegal had higher concentrations of total extractable phenolics (TEPH), total extractable tannins (TET) and total condensed tannins (TCT), but lower in NDF, ADF and ADL than the fruits of nubica, tortilis and brevispica. Mineral concentrations varied among species; all were relatively poor in phosphorus, moderate in calcium and magnesium, and rich in microelements. A significant (p<0.05) variation in gas production after 12, 24, 48, 72 and 96 h was recorded between species. Nubica had the highest (p<0.05) rate of gas production (0.0925) while the highest potential gas production was recorded in tortilis. A strong negative correlation between TEPH and TET with gas production after 24, 48, 72 and 96 was established (r=-0.72 to -0.82). Crude protein and TCT correlated negatively but also weakly with gas production characteristics. Organic matter digestibility calculated from gas production after 48 h (OMD48) ranged between 465 g/kg DM in reficiens and 611 g/kg DM in tortilis. The results of this study indicate that acacia species have the potential to be used as feed supplements.

Determination of Nutritive Value of Wild Mustard, Sinapsis arvensis Harvested at Different Maturity Stages Using In situ and In vitro Measurements

  • Kamalak, Adem;Canbolat, Onder;Gurbuz, Yavuz;Ozkan, Cagri Ozgur;Kizilsimsek, Mustafa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1249-1254
    • /
    • 2005
  • The aim of this study was to determine the effect of maturity stage on the nutritive value of wild mustard straw in terms of chemical composition, in situ, in vitro dry matter degradability and calculated ME. The nutritive values of wild mustard, Sinapsis arvensis hays harvested at three stages were evaluated by chemical composition, in vitro gas production and in situ dry matter degradation methods. Gas production or dry matter (DM) degradation were determined at 0, 3, 6, 12, 24, 48, 72 and 96 h and their kinetics were described using the equation p = a+b(1-e$^{-ct}$). Maturity had a significant effect on both the chemical composition and degradability of wild mustard. Neutral detergent fibre (NDF) and acid detergent fibre (ADF) (p<0.001) increased with increasing maturity whereas the crude protein (CP) (p<0.001) decreased. The gas produced after 96 h incubation ranged between 64.7 and 81.5 ml per 0.200 g of dry matter. The gas production (ml) at all incubation times and estimated parameters decreased with increasing maturity of wild mustard. The gas production at all incubation times and estimated parameters (a, b (a+b), metabolizable energy (ME) and organic matter digestibility (OMD)) were negatively correlated with NDF and ADF. The DM disappearance after 96 h incubation ranged between 50.8 and 76.1%. The in situ DM disappearance at all incubation times and estimated parameters decreased with increasing maturity of wild mustard. The in situ dry matter disappearance at all incubation times and some estimated parameters (c, a, b and effective dry matter degradability (EDMD)) were negatively correlated with NDF and ADF but positively correlated with CP. The nutritive value of wild mustard continually changed as it matured. Wild mustard, harvested at the proper stage of maturity offers considerable potential as a high quality forage for ruminants during the winter feeding period. The present study showed that if higher quality forage is an objective, wild mustard should be harvested at the early flowering stage.

Using Plant Source as a Buffering Agent to Manipulating Rumen Fermentation in an In vitro Gas Production System

  • Kang, S.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1424-1436
    • /
    • 2013
  • The objective of this study was to investigate the effect of banana flower powder (BAFLOP) supplementation on gas production kinetics and rumen fermentation efficiency in in vitro incubation with different ratios of roughage to concentrate in swamp buffalo and cattle rumen fluid. Two male, rumen fistulated dairy steers and swamp buffaloes were used as rumen fluid donors. The treatments were arranged according to a $2{\times}2{\times}3$ factorial arrangement in a Completely randomized design by using two ratios of roughage to concentrate (R:C; 75:25 and 25:75) and 3 levels of BAFLOP supplementation (0, 2 and 4% of dietary substrate) into two different kinds of rumen fluid (beef cattle and swamp buffalo). Under this investigation, the results revealed that the rumen ecology was affected by R:C ratio. The pH declined as a result of using high concentrate ratio; however, supplementation of BAFLOP could buffer the pH which led to an improvement of ruminal efficiency. BAFLOP supplementation affected acetic acid (C2) when the proportion of concentrate was increased. However, there were no effect on total volatile fatty acid (TVFA) and butyric acid (C4) by BAFLOP supplementation. The microbial community was affected by BAFLOP supplementation, especially the bacterial population. As revealed by real-time PCR, the populations of F. succinogenes and R. albus were reduced by the high concentrate treatments while that of R. flavafaciens were increased. The populations of three dominant cellulolytic bacteria were enhanced by BAFLOP supplementation, especially on high concentrate diet. BAFLOP supplementation did not influence the ammonia nitrogen ($NH_3$-N) concentration, while R:C did. In addition, the in vitro digestibility was improved by either R:C or BAFLOP supplementation. The BAFLOP supplementation showed an effect on gas production kinetics, except for the gas production rate constant for the insoluble fraction (c), while treatments with high concentrate ratio resulted in the highest values. In addition, BAFLOP tended to increase gas production. Based on this study, it could be concluded that R:C had an effect on rumen ecology both in buffalo and cattle rumen fluid and hence, BAFLOP could be used as a rumen buffering agent for enhancing rumen ecology fed on high concentrate diet. It is recommended that level of BAFLOP supplementation should be at 2 to 4% of total dry matter of substrate. However, in vivo trials should be subsequently conducted to investigate the effect of BAFLOP in high concentrate diets on rumen ecology as well as ruminant production.

Influence of Rain Tree Pod Meal Supplementation on Rice Straw Based Diets Using In vitro Gas Fermentation Technique

  • Anantasook, N.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.325-334
    • /
    • 2012
  • The objective of this study was to determine the roughage to concentrate (R:C) ratio with rain tree pod meal (RPM) supplementation on in vitro fermentation using gas production technique. The experiment design was a 6${\times}$4 factorial arrangement in a CRD. Factor A was 6 levels of R:C ratio (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100) and factor B was 4 levels of RPM (0, 4, 8 and 12 mg). It was found that gas kinetic, extent rate (c) was linearly increased (p<0.01) with an increasing level of concentrate while cumulative gas production (96 h) was higher in R:C of 40:60. In addition, interaction of R:C ratio and RPM level affected $NH_3-N$ and IVDMD and were highest in R:C of 0:100 with 0, 4 mg of RPM and 40:60 with 8 mg of RPM, respectively. Moreover, interaction of R:C ratio and RPM level significantly increased total volatile fatty acids and propionate concentration whereas lower acetate, acetate to propionate ratios and $CH_4$ production in R:C of 20:80 with 8 mg of RPM. Moreover, the two factors, R:C ratio and RPM level influenced the protozoal population and the percentage of methanogens in the total bacteria population. In addition, the use of real-time PCR found that a high level of concentrate in the diet remarkably decreased three cellulolytic bacteria numbers (F. succinogenes, R. flavefaciens and R. albus). Based on this study, it is suggested that the ratio of R:C at 40:60 and RPM level at 12 mg could improve ruminal fluid fermentation in terms of reducing fermentation losses, thus improving VFA profiles and ruminal ecology.

Evaluation of Feed Values of Korean Straws Using Pressure Transducer (Auto-Pressure Transducer를 이용한 국내산 고간류의 사료가치평가)

  • Lee, Sang S.;Ha, J. K.;Chang, M. B.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.241-250
    • /
    • 2003
  • Accurate and rapid evaluation of the nutritional quality of Korean straws is important because of the recent increase in the use of these feedstuffs in Korean. The aim of the study was to establish with relationships between ruminal fermentation of Korean straws and in vitro gas production using a pressure transducer. The pressure transducer system includes pressure censors, AD board, LED monitor, and the computer with real-time graphics. Both gas production and DM digestibility data were fitted into the exponential equation P = a + b (1-e-$1-e^{-ct}$). The initial rate of gas production was highest for rice straw, followed by barley straw and wheat straw. The gas production rate of constant (c) in gas production for rice straw, wheat straw, and barley straw were 3.8, 2.5, and 2.5 $%h^{-1}$, respectively. Total VFA concentration (mM) produced after 72h incubation was similar among three Korean straws, even though was variable during the early (12h) fermentation. Volume of gas production was related (P> 0.05: r = 0.76 to 0.83) to DM disappearance and also strongly related (p< 0.05: r = 0.91 to 0.98) to VFA concentration at all incubation times. Linear correlation showed between gas production and DM disappearance and VFA by in vitro will be matched in in vivo digestibility.

Pretreatments of Broussonetia papyrifera: in vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile

  • Dong, Lifeng;Gao, Yanhua;Jing, Xuelan;Guo, Huiping;Zhang, Hongsen;Lai, Qi;Diao, Qiyu
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1367-1378
    • /
    • 2022
  • Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment. Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation. Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production. Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems.