Browse > Article
http://dx.doi.org/10.5713/ajas.2011.11131

Influence of Rain Tree Pod Meal Supplementation on Rice Straw Based Diets Using In vitro Gas Fermentation Technique  

Anantasook, N. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
Wanapat, M. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.3, 2012 , pp. 325-334 More about this Journal
Abstract
The objective of this study was to determine the roughage to concentrate (R:C) ratio with rain tree pod meal (RPM) supplementation on in vitro fermentation using gas production technique. The experiment design was a 6${\times}$4 factorial arrangement in a CRD. Factor A was 6 levels of R:C ratio (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100) and factor B was 4 levels of RPM (0, 4, 8 and 12 mg). It was found that gas kinetic, extent rate (c) was linearly increased (p<0.01) with an increasing level of concentrate while cumulative gas production (96 h) was higher in R:C of 40:60. In addition, interaction of R:C ratio and RPM level affected $NH_3-N$ and IVDMD and were highest in R:C of 0:100 with 0, 4 mg of RPM and 40:60 with 8 mg of RPM, respectively. Moreover, interaction of R:C ratio and RPM level significantly increased total volatile fatty acids and propionate concentration whereas lower acetate, acetate to propionate ratios and $CH_4$ production in R:C of 20:80 with 8 mg of RPM. Moreover, the two factors, R:C ratio and RPM level influenced the protozoal population and the percentage of methanogens in the total bacteria population. In addition, the use of real-time PCR found that a high level of concentrate in the diet remarkably decreased three cellulolytic bacteria numbers (F. succinogenes, R. flavefaciens and R. albus). Based on this study, it is suggested that the ratio of R:C at 40:60 and RPM level at 12 mg could improve ruminal fluid fermentation in terms of reducing fermentation losses, thus improving VFA profiles and ruminal ecology.
Keywords
Rain Tree Pod Meal; Roughage to Concentrate Ratio; Fermentation; Methane Production; Rice Straw;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Waghorn, G. C. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production - progress and challenges. Anim. Feed Sci. Technol. 147:116-139.   DOI   ScienceOn
2 Walichnowski, Z. and S. G. Lawrence. 1982. Studies into the effects of cadmium and low pH upon methane production. Hydrobiologia 91-92:1573-5117.
3 Wanapat, M. 2000. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian-Aust. J. Anim. Sci. 13(Suppl.):59-67.
4 Wanapat, M. and A. Cherdthong. 2009. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in Swamp buffalo. Curr. Microbiol. 58:294-299.   DOI   ScienceOn
5 Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
6 Miron, J., D. Ben-Ghedalia and M. Morrison. 2001. Invited review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84:1294-1309.   DOI   ScienceOn
7 Moss, A. R., J. P. Jouany and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. J. Ann. Zootech. 49:231-253.   DOI   ScienceOn
8 Mueller-Harvey, I. 2006. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86:2010-2037.   DOI   ScienceOn
9 Newbold, C. J., S. M. Hassan, J. Wang, M. E. Ortega and R. J. Wallace. 1997. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br. J. Nutr. 78:237-249.   DOI   ScienceOn
10 Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503.   DOI
11 Patra, A. K. and J. Saxena. 2011. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91:24-37.   DOI   ScienceOn
12 Poungchompu, O., M. Wanapat, C. Wachirapakorn, S. Wanapat and A. Cherdthong. 2009. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 63:389-400.   DOI   ScienceOn
13 Puchala, R., B. R. Min, A. L. Goetsch and T. Sahlu. 2005. The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci. 83:182-186.
14 Reed, J. D., H. Soller and A. Wodward. 1990. Fodder tree and straw diets for sheep: Intake, growth, digestibility and the effects of phenolics on nitrogen utilization. Anim. Feed Sci. Technol. 30:39-50.   DOI   ScienceOn
15 Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science 292:1119-1122.   DOI   ScienceOn
16 George, W. S. and R. E. Craig. 2006. Samanea saman (rain tree). Species Profiles for Pacific Island Agroforestry.
17 Grainger, C., T. Clarke, M. J. Auldist, K. A. Beauchemin, S. M. McGinn, G. C. Waghorn and R. J. Eckard. 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can. J. Anim. Sci. 89:241-251.   DOI   ScienceOn
18 Hess, H. D., T. T. Tiemann, F. Noto, J. E. Carulla and M. Kruezer. 2006. Strategic use of tannins as means to limit methane emission from ruminant livestock. In greenhouse gases and animal agriculture: an update. In: International Congress Series No. 1293 (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). Elsevier, The Netherlands, pp. 164-167.
19 Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
20 Jouany, J. P. and B. Lassalas. 1997. Study of the adaptation of the rumen ecosystem to the antimethanoginic effect of monensin measured in vivo. Reprod. Nutr. Dev. 37(Suppl. 1): S69-S70.   DOI
21 Koike, S. and Y. Kobayashi. 2001. Develop and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobactor succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366.   DOI   ScienceOn
22 Lusin, R. and M. Wanapat. 2010. Effect of roughage to concentrate ratio and rice bran oil supplementation on rumen fermentation characteristics using in vitro gas production technique. 14th AAAP conference at pingtung university, Taiwan, p. 353-356.
23 Mackie, R. I., F. M. C. Gilchrist, A. M. Robberts, P. E. Hannah and H. M. Schwartz. 1978. Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J. Agric. Sci. 90:241.   DOI   ScienceOn
24 McGinn, S. M., K. A. Beauchemin, T. Coates and D. Colombatto. 2004. Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 82:3346-3356.
25 Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522.   DOI   ScienceOn
26 Burns, R. E. 1971. Method for estimation of tannin in the grain sorghum. J. Agron. 163:511-512.
27 Chanthakhoun, V., M. Wanapat, C. Wachirapakorn and S. Wanapat. 2011. Effect of legume (Phaseolus calcaratus) hay supplementation on rumen microorganisms, fermentation and nutrient digestibility in swamp buffalo. Livest. Sci. :10.1016/j.livsci.2011.02.003.   DOI   ScienceOn
28 Denman, S. E., N. Tomkins and C. S. McSweeney. 2005. Monitoring the effect of bromochloromethane on methanogen populations within the rumen using qPCR. In: 2nd International Symposium on Greenhouse Gases and Animal Agriculture (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). p. 112 ETH Zurich, Switzerland.
29 Cherdthong, A., M. Wanapat, P. Kongmun, R. Pilajan and P. Khejornsart. 2010. Rumen fermentation, Microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 9:1667-1675.   DOI
30 De Semet, S., D. I. Demeyer and C. J. van Nevel. 1992. Effect of defaunation and hay:concentrate ratio on fermentation, fibre digestion and passage in the rumen of sheep. J. Anim. Feed Sci. Technol. 37:333-344.   DOI   ScienceOn
31 Evans, J. D. and S. A. Martin. 2000. Effects of thymol on ruminal micro-organisms. J. Current Microbiol. 41:336-340.   DOI   ScienceOn
32 Field, J. A., S. Kortekaas and G. Lettinga. 1989. The tannin theory of methanogenic toxicity. Biol. Wastes 29:241-262.   DOI   ScienceOn
33 Franzolin, R. and B. A. Dehority. 1996. Effect of prolonged high-concentrate feeding on ruminal protozoa concentrations. J. Anim. Sci. 74:2803-2809.
34 Galyean, M. 1989. Laboratory Procedures in Animal Nutrition Research. New Mexico State University.
35 Wora-anu, S., M. Wanapat, C. Wachirapakorn and N. Nuntaso. 2000. Effects of roughage to concentrate ratio on ruminal ecology and voluntary feed intake in cattle and swamp buffaloes fed on urea- treated rice straw. Asian-Aust. J. Anim. Sci. 13(Suppl.):236-236.   DOI   ScienceOn
36 Animut, G., A. L. Goetsch, R. Puchala, A. K. Patra, T. Sahlu, V. H. Varel and J. Wells. 2008. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol. 144:212-227.   DOI   ScienceOn
37 AOAC. 1990. Official methods of analyses, 15th edn. Assoc. Offic. Anal. Chem, Arlington, VA.
38 Barry, T. M. 1983. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 3.3Rates of body and wool growth. Br. J. Nutr. 54:211-217.   DOI   ScienceOn
39 Wanapat, M. and O. Pimpa. 1999. Effect of ruminal $NH_3$-N levels ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Aust. J. Anim. Sci. 12:904-907.   DOI   ScienceOn
40 Wang, C. J., S. P. Wang and H. Zhou. 2000. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. J. Anim. Feed Sci. Technol. 148:157-166.
41 Wright, A. G., A. J. Williams, B. Winder, C. T. Christophersen, S. L. Rodgers and K. D. Smith. 2004. Molecular diversity of rumen methanogens from sheep in western Australia. Appl. Environ. Microbiol. 70:1263-1270.   DOI   ScienceOn
42 Yan, T., R. E. Agnew, F. J. Gordon and M. G. Porter. 2000. Prediction of methane energy output in dairy and beef cattle offered grass silage based diets. J. Livest. Prod. Sci. 64:253-263.   DOI   ScienceOn
43 Yu, Z. and M. Morrison. 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Bio. Techniques. 36:808-812.
44 Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Anim. Sci. 43:910-929.
45 Samuel, M., S. Sagathewan, J. Thomus and G. Mathen. 1997. An HPLC method for estimation of volatile fatty acids of rumenfluid. Indian J. Anim. Sci. 67:805-807.
46 SAS, 1996. User's Guide: Statistic, Version 5. Edition. SAS. Inst, Cary, NC, USA.
47 Singh, K. and G. P. Singh. 1997. Effect of concentrate levels in diet of cattle on rumen microorganisms. Indian J. Anim. Sci. 64:349-350.
48 Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the digestion of forage crops. J. Br. Grassland Soc. 18:104-111.   DOI
49 Van Soest, P. J. 1982. Nutritional ecology of the ruminant. O&B Books Inc, Corvallis.
50 Vinh, N. T., M. Wanapat, P. Khejornsart and P. Kongmun. 2011. Studies of diversity of rumen microorganisms and fermentation in swamp buffalo fed different diets. J. Anim. Vet. Adv. 10:406-414.   DOI