• Title/Summary/Keyword: In situ particle size

Search Result 102, Processing Time 0.028 seconds

Preparation and Properties of Urea-Formaldehyde Microcapsules Containing Phytoncide Oil (피톤치드오일을 함유한 우레아-포름알데히드 마이크로캡슐의 제조와 성질)

  • Hwang, Jin-Cheol;Park, Yun-Jeong;Kim, Hye-In;Park, Su-Min
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.111-113
    • /
    • 2008
  • In this study, for natural leather use, the phytoncide oil of antibacterial materials was encapsulated in several micro-diameter shell which slowly releases from the leather treated with antibacterial microcapsules. The microcapsule was synthesized by in-situ polymerization of urea and formaldehyde. The effects of surfactants on the average particle size and distributions, morphologies and antibiosis were investigated to design microcapsule.

  • PDF

Preparation and characterization of Melamine-Formaldehyde Resin Microcapsules Containing Fragrant Oil

  • Hwang, Jun-Seok;Kim, Jin-Nam;Wee, Young-Jung;Yun, Jong-Sun;Jang, Hong-Gi;Kim, Sun-Ho;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.332-336
    • /
    • 2006
  • In this study, melamine-formaldehyde microcapsules were prepared via in situ polymerization using peppermint oil as a core material, melamine-formaldehyde as the wall material, Tween 20 as the emulsifier, and poly (vinyl alcohol) as a protective colloid. The melamine-formaldehyde microcapsules prepared in this study were then evaluated with regard to their structures, thermal properties, particle size distributions, morphologies, and release behaviors.

Morphological control and electrostatic deposition of silver nanoparticles produced by condensation-evaporation method (증발-응축법에 의해 발생된 은(silver) 나노입자의 구조제어 및 전기적 부착 특성 연구)

  • Kim, Whidong;Ahn, Ji Young;Kim, Soo Hyung
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2009
  • This paper describes a condensation-evaporation method (CEM) to produce size-controlled spherical silver nanoparticles by perturbing coagulation and coalescence processes in the gas phase. Polydisperse silver nanoparticles generated by the CEM were first introduced into a differential mobility analyzer (DMA) to select a group of silver nanoparticles with same electrical mobility, which also enables to make a group of nanoparticles with elongated structures and same projected area. These silver nanoparticles selected by the DMA were then in-situ sintered at ${\sim}600^{\circ}C$, and then they were observed to turn into spherical shaped nanoparticles by the rapid coalescence process. With the assistance of modified converging-typed quartz reactor, we can also produce the 10 times higher number concentration of silver nanoparticles compared with a general quartz reactor with uniform diameter. Finally, the spherical silver nanoparticles with 30 nm were electrostatically deposited on the surface of silicon substrate with the coverage rate of ~4%/hr. This useful preparation method of size-controlled monodisperse silver nanoparticles developed in this work can be applied to the various studies for characterizing the physical, chemical, optical, and biological properties of nanoparticles as a function of their size.

  • PDF

Formation of $Fe_3AlC$ Base Alloy by Mechanical Alloying and Vacuum Hot Pressing

  • Isonishi, Kazuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1290-1291
    • /
    • 2006
  • Fabrication of $Fe_3AlC$ matrix in-situ composite, reinforced by a FeAl phase, was studied by using the powder metallurgical processing route. Especially, in order to disperse the second phase more finely, we chose the mechanical alloying process. We investigated the microstructural and mechanical properties of the consolidated material. After consolidation by vacuum hot pressing, the compact showed almost full density and consisted of a $Fe_3AlC$ matrix and FeAl second phase (average particle size was less than 1m). The compact showed HV746, which was higher than that of the arc melted $Fe_3AlC$ monolithic material, HV603.

  • PDF

Evaluating feed value of native Jeju bamboo (Sasa quelpaertensis Nakai) for beef cattle

  • Seul, Lee;Youl Chang, Baek;Mingyung, Lee;Seoyoung, Jeon;Han Tae, Bang;Seongwon, Seo
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.238-247
    • /
    • 2023
  • Objective: Recently, indigenous Korean grass Sasa quelpaertensis Nakai (SQ) has garnered much interest as a roughage source for livestock to mitigate its adverse effects on habitat diversity. Thus, the objective of the present study was to evaluate the ruminal fermentation, palatability, and nutrient digestibility of SQ for Korean native beef cattle (Hanwoo) using in vitro rumen fermentation, in situ rumen degradability, and in vivo feeding trials. Methods: Using in vitro tests with rumen fluid as the inoculum for 48 h, ruminal fermentation of SQ was evaluated and compared with that of other roughage sources commonly used in Korea (i.e., rice straw, Timothy hay, and Italian ryegrass [IRG]). Additionally, an in situ trial 96 h was performed using three cannulated Hanwoo steers. Further, an in vivo trial was performed using eight Hanwoo steers to compare the palatability of SQ with rice straw in total mixed ration (TMR) and forage-concentrate separate feeding conditions. Finally, an in vivo digestibility trial of SQ fed as TMR of two particle sizes was performed with four Hanwoo steers. Results: In vitro and in situ trials revealed that SQ was comparable or superior to rice straw in terms of the ruminal fermentation characteristics of pH, gas production, total volatile fatty acid content, and effective ruminal dry matter digestibility (DMD), although its fermentability was lower than that of Timothy hay and IRG. In the palatability test, steers showed a greater preference for SQ when given as TMR. The total tract DMD of SQ fed as TMR was 75.9%±1.37%, and it did not differ by particle size. Conclusion: The feed value of SQ as a roughage source for Hanwoo steers is comparable or superior to that of rice straw, particularly when provided as TMR.

Synthesis and Characterization of High Impact Polystyrene/Organically Modified Layered Silicate Nanocomposites (내충격성 폴리스티렌과 유기화 층상 실리케이트 나노복합체의 합성 및 특성)

  • 김관영;임효진;박상민;이성재
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.377-384
    • /
    • 2003
  • High impact polystyrene/organically modified layered silicate (HIPS/OLS) nanocomposites by in situ polymerization were synthesized to investigate the effect of clay on the particle size and properties of rubber. In the OLS, the montmorillonite having benzyl group showed best dispersion in polystyrene phase. With the addition of clay, the intercalated peak from XRB was confirmed, but the peak gradually shifted to lower angle as rubber concentration increased. Thus, it is speculated that the organoclay disperses better in rubber phase than in polystyrene phase. The average rubber particle size increased and the particle size distribution widened as the amount of clay increased, which may be caused by the increase of the viscosity ratio of rubber to polystyrene phases and the unstable dispersion. The materials having clay showed improved thermal properties from thermogravimetric analysis. Rheological properties such as complex viscosity and storage modulus increased as the amount of clay increased.

Fe-TiC Composite Powders Fabricated by Planetary Ball Mill Processing (유성볼밀공정으로 제조된 Fe-TiC 복합재료 분말)

  • Lee, B.H.;Ahn, K.B.;Bae, S.W.;Bae, S.W.;Khoa, H.X.;Kim, B.K.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.208-215
    • /
    • 2015
  • Fe-TiC composite powders were fabricated by planetary ball mill processing. Two kinds of powder mixtures were prepared from the starting materials of (a) (Fe, TiC) powders and (b) (Fe, $TiH_2$, Carbon) powders, respectively. Milling speed (300, 500 and 700 rpm) and time (1, 2, and 3 h) were varied. For (Fe, $TiH_2$, Carbon) powders, an in situ reaction synthesis of TiC after the planetary ball mill processing was added to obtain a homogeneous distribution of ultrafine TiC particulates in Fe matrix. Powder characteristics such as particle size, size distribution, shape, and mixing homogeneity were investigated.

In situ synthesis of acrylic emulsion for improvement of anti corrosion property on steel plate (금속 코팅용 아크릴 올리고머 에멀젼의 합성에 관한 연구)

  • Lee, Soo;Park, Keun-Ho;Jin, Seok-Hwan;Park, Shin-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.485-494
    • /
    • 2008
  • The acrylic coating emulsions were prepared by the emulsion polymerization to protect the surface of steel plate from the corrosion chemicals like acid, base and salt water. MMA(methyl methacrylate), styrene, BA(butyl acrylate), and 2-HEMA(2-hydroxyethyl methacrylate) were used as monomer. KPS(potassium persulfate) and SBS(sodium bisulfite) as redox initiator and SDBS(sodium dodecylbenzene sulfonate) as emulsifier were used on the emulsion polymerization reaction. The most stable in-situ coating was obtained when 10% of MMA was added. Both particle size and quantity in emulsion were decreased as increasing the mount of SDBS. the most stable prepared coating emulsion with polyisocyanate crosslinker showed very high anticorrosion properties on the coated steel layer to salt water, whereas no significant improvement of anticorrosion property to acdic and basic condition it showed.

In situ viscoelastic properties of insoluble and porous polysaccharide biopolymer dextran produced by Leuconostoc mesenteroides using particle-tracking microrheology

  • Jeon, Min-Kyung;Kwon, Tae-Hyuk;Park, Jin-Sung;Shin, Jennifer H.
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.849-862
    • /
    • 2017
  • With growing interests in using bacterial biopolymers in geotechnical practices, identifying mechanical properties of soft gel-like biopolymers is important in predicting their efficacy in soil modification and treatment. As one of the promising candidates, dextran was found to be produced by Leuconostoc mesenteroides. The model bacteria utilize sucrose as working material and synthesize both soluble and insoluble dextran which forms a complex and inhomogeneous polymer network. However, the traditional rheometer has a limitation to capture in situ properties of inherently porous and inhomogeneous biopolymers. Therefore, we used the particle tracking microrheology to characterize the material properties of the dextran polymer. TEM images revealed a range of pore size mostly less than $20{\mu}m$, showing large pores > $2{\mu}m$ and small pores within the solid matrix whose sizes are less than $1{\mu}m$. Microrheology data showed two distinct regimes in the bacterial dextran, purely viscous pore region of soluble dextran and viscoelastic region of the solid part of insoluble dextran matrix. Diffusive beads represented the soluble dextran dissolved in an aqueous phase, of which viscosity was three times higher than the growth medium viscosity. The local properties of the insoluble dextran were extracted from the results of the minimally moving beads embedded in the dextran matrix or trapped in small pores. At high frequency (${\omega}>0.2Hz$), the insoluble dextran showed the elastic behavior with the storage modulus of ~0.1 Pa. As frequency decreased, the insoluble dextran matrix exhibited the viscoelastic behavior with the decreasing storage modulus in the range of ${\sim}0.1-10^{-3}Pa$ and the increasing loss modulus in the range of ${\sim}10^{-4}-1\;Pa$. The obtained results provide a compilation of frequency-dependent rheological or viscoelastic properties of soft gel-like porous biopolymers at the particular conditions where soil bacteria produce bacterial biopolymers in subsurface.

Hydrogeological Characteristics of a Riverine Wetland in the Nakdong River Delta, Korea

  • Jeon, Hang-Tak;Cha, Eun-Ji;Lim, Woo-Ri;Yoon, Sul-Min;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.425-444
    • /
    • 2021
  • Investigating the physical and chemical properties of riverine wetlands is necessary to understand their distribution characteristics and depositional environment. This study investigated the physical (particle size, color, and type) and chemical properties (organic, inorganic, and moisture contents) of sediments in Samrak wetland, located in the Nakdong River estuary area in Busan, South Korea. The particle size analysis indicated that the hydraulic conductivity values for the coarse grain and the mixture of coarse and fine grains ranged from 2.03 to 3.49×10-1 cm s-1 and 7.18×10-3 to 1.24×10-7 cm s-1, respectively. In-situ water quality and laboratory-based chemical analyses and radon-222 measurement were performed on groundwater and surface water in the wetland and water from the nearby Nakdong River. The physical and chemical properties of Samrak wetland was characterized by the sediments in the vertical and lateral direction. The concentrations of chemical components in the wetland groundwater were distinctly higher than those in the Nakdong River water though the wetland groundwater and Nakdong River water equally belonged to the Ca-HCO3 type.