• 제목/요약/키워드: In situ TEM

검색결과 117건 처리시간 0.074초

Cross-sectional TEM Specimens Priparation of Precisely Selected Regions of Semiconductor Devices using Focused Ion Beam Milling

  • 김정태;김호정;조윤성;최수한
    • 한국재료학회지
    • /
    • 제3권2호
    • /
    • pp.193-196
    • /
    • 1993
  • A procedure for preparing cross-sectional specimens for transmission electron microscopy(TEM)by focused ion beam(FIB)milling of specific regions of semiconductor devices is outlined. This technique enables TEM specimens to be pripared at precisely preselected area. In-situ #W thin film deposition on the top surface of desired site is complementally used to secure the TEM specimens to be less wedge shaped, which is main shortcoming of previous FIB-assisted TEM sample preparation technique. This technique is quite useful for the TEM sample priparation for fault finding and the characterization of fabrication process associated with submicron contact technologies.

  • PDF

실시간 XRD와 TEM을 이용한 MAPbI3의 온도 변화에 따른 구조 분석 (Investigation of Electron Thermally Induced Phase Transition in MAPbI3 Perovskite Solar Cells Using In-Situ XRD and TEM)

  • 최진석;엄지호;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.64-69
    • /
    • 2019
  • Methylammonium lead triiodide ($MAPbI_3$)-based perovskite solar cells potentially have potential advantages such as high efficiency and low-cost manufacturing procedures. However, $MAPbI_3$ is structurally unstable and has low phase-change temperatures ($30^{\circ}C$ and $130^{\circ}C$); it is necessary to solve these problems. We investigated the crystal structure and phase separation using real-time temperature-change X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. $MAPbI_3$ has a tetragonal structure, and at about $35^{\circ}C$ the c-axis contracts, transforming $MAPbI_3$ into the related cubic crystal structure. In addition, at $130^{\circ}C$, phase separation occurs in which $CH_3NH_2$ and HI at the center of the unit cell of the perovskite structure are extracted by gas, leavingand only $PbI_2$ of the three-component structure, is produced as the final solid product.

Nano-Scale Observation of Nanomaterials by In-Situ TEM and Ultrathin SiN Membrane Platform

  • 안치원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.657-657
    • /
    • 2013
  • In-situ observations of nano-scale behavior of nanomaterials are very important to understand onthe nano-scale phenomena associated with phase change, atomic movement, electrical or optical properties, and even reactions which take place in gas or liquid phases. We have developed on the in-situ experimental technologies of nano-materials (nano-cluster, nanowire, carbon nanotube, and graphene, et al.) and their interactions (percolation of metal nanoclusters, inter-diffusion, metal contacts and phase changes in nanowire devices, formation of solid nano-pores, melting behavior of isolated nano-metal in a nano-cup, et al.) by nano-discovery membrane platform [1-4]. Between two microelectrodes on a silicon nitride membrane platform, electrical percolations of metal nano-clusters are observed with nano-structures of deposited clusters. Their in-situ monitoring can make percolation devices of different conductance, nanoclusters based memory devices, and surface plasmonic enhancement devices, et al. As basic evidence on the phase change memory, phase change behaviors of nanowire devices are observed at a nano-scale.

  • PDF

고분자블렌드에서의 변형거동 (Deformation Behavior in Compatible Polymer Blends)

  • 전병철
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1992년도 추계학술발표강연 및 논문개요집
    • /
    • pp.121-121
    • /
    • 1992
  • Deformation behavior of compatible polymer blends was studied using scanning electron, optical, and transmission electron microscopies. Four different compatible systems were employed and charaterized in this investigation : polystyrene(PS) and polyphenylene oxide(PPO), polystyrene(PS) and polyvinlmethylether(PVME), polystyrene(PS) and poly $\alpha$-methylstyrene(P$\alpha$MS). Individual craze and shear deformation zone microstructures were examined by transmission microscopy (TEM). For TEM observations, specimens deformed in-situ on a TEM grid were utilized. Quantiative analysis of these crazes and shear deformation zones was obtained from the nicrodensitometry of the TEM negatives in the manner developed by Lauterwasser and Kramer. Microdensitometry resulys showed that the fibril extension ratio decreased as the PPO content increased in the PS/PPO blends, and finally, for 100% PPO, only shear deformation zones were observed. For the PS/PVME blends, the ribril extension ratio also decreased as the VME content increased. For the PS/P$\alpha$MS blends, the fibril extension ratio increased as the P$\alpha$MS content increased, For the PPO/P$\alpha$MS blends, the fibril extension ratio increased as the P$\alpha$MS content increased.

  • PDF

In-situ HRTEM Studies of Alumina-Aluminum Solid-Liquid Interfaces

  • Oh, Sang-Ho;Scheu, Christina;Ruhle, Manfred
    • Applied Microscopy
    • /
    • 제36권spc1호
    • /
    • pp.19-24
    • /
    • 2006
  • The alumina-aluminum solid-liquid interfaces were directly observed at atomic scale by heating the alumina single crystal in high-voltage electron microscope (HVEM) owing to the electron beam damage processes, Atomic ordering in the first several layers of the liquid was clearly resolved adjacent to the alumina surface and its relevance to the single crystal growth was examined with the real-time observations.

Preparation and Properties of in situ Polymerized Poly(ethylene terephthalate)/Fumed Silica Nanocomposites

  • Hahm, Wan-Gyu;Myung, Hee-Soo;Im, Seung-Soon
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.85-93
    • /
    • 2004
  • We have prepared poly(ethylene terephthalate) (PET) nanocomposites filled with two different types of fumed silicas, hydrophilic (FS) and hydrophobic (MFS) silicas of 7-nm diameter, by in situ polymerization. We then investigated the morphological changes, rheological properties, crystallization behavior, and mechanical properties of the PET nanocomposites. Transmission electron microscopy (TEM) images indicate that the dispersibility of the fumed silica was improved effectively by in situ polymerization; in particular, MFS had better dispersibility than FS on the non-polar PET polymer. The crystallization behavior of the nanocomposites revealed a peculiar tendency: all the fillers acted as retarding agents for the crystallization of the PET nanocomposites. The incorporation of fumed silicas increased the intrinsic viscosities (IV) of the PET matrix, and the strong particleparticle interactions of the filler led to an increased melt viscosity. Additionally, the mechanical properties, toughness, and modules of the nano-composites all increased, even at low filler content.

EF-TEM 직접가열 실험을 통한 titanium의 고온 상전이 연구 (A Study of Titanium Phase Transition through In-situ EF-TEM Heating Experiments)

  • 김진규;이영부;김윤중
    • Applied Microscopy
    • /
    • 제33권1호
    • /
    • pp.49-58
    • /
    • 2003
  • EF-TEM 직접가열 실험을 통하여 titanium의 ${\alpha}-{\beta}$상전이를 연구하였다. 통계적 오차를 줄이기 위해 서로 다른 3군데의 titanium foil의 영역을 관찰하였고, 각각의 영역에 대해 단계별로($RT{\rightarrow}600{\rightarrow}900{\rightarrow}RT$) 회절패턴과 이미지를 기록하였다. 이 연구를 통해 얻은 결과는 다음과 같다. (1) Titanium은 $900^{\circ}C$에서 급격히 상전이가 진행된다. 이 온도에서는 ${\alpha}$${\beta}$-상이 같이 존재한다. (2) 상전이가 일어난 ${\beta}$-상의 영역은 쌍정구조를 가진 plate 형태로 나타나며, 그들은 서로 상호 회전 배열되어 있다. (3) 전자회절도형과 EDS 분석 결과, $600^{\circ}C$ 이상의 가열에서는 열적 산화에 의해 Ti의 산화물이 표면에서 생성되기 시작하며 이들은 냉각 시 Ti의 ${\beta}{\rightarrow}{\alpha}$ 가역 상전이를 저해한다.