• Title/Summary/Keyword: In clustering

Search Result 5,135, Processing Time 0.033 seconds

Environmental Survey Data Modeling Using K-means Clustering Techniques

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.557-566
    • /
    • 2005
  • Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper we used k-means clustering of several clustering techniques. The k-means Clustering Is classified as a partitional clustering method. We analyze 2002 Gyeongnam social indicator survey data using k-means clustering techniques for environmental information. We can use these outputs given by k-means clustering for environmental preservation and environmental improvement.

  • PDF

Empirical Comparisons of Clustering Algorithms using Silhouette Information

  • Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • Many clustering algorithms have been used in diverse fields. When we need to group given data set into clusters, many clustering algorithms based on similarity or distance measures are considered. Most clustering works have been based on hierarchical and non-hierarchical clustering algorithms. Generally, for the clustering works, researchers have used clustering algorithms case by case from these algorithms. Also they have to determine proper clustering methods subjectively by their prior knowledge. In this paper, to solve the subjective problem of clustering we make empirical comparisons of popular clustering algorithms which are hierarchical and non hierarchical techniques using Silhouette measure. We use silhouette information to evaluate the clustering results such as the number of clusters and cluster variance. We verify our comparison study by experimental results using data sets from UCI machine learning repository. Therefore we are able to use efficient and objective clustering algorithms.

A Two-Stage Method for Near-Optimal Clustering (최적에 가까운 군집화를 위한 이단계 방법)

  • 윤복식
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.1
    • /
    • pp.43-56
    • /
    • 2004
  • The purpose of clustering is to partition a set of objects into several clusters based on some appropriate similarity measure. In most cases, clustering is considered without any prior information on the number of clusters or the structure of the given data, which makes clustering is one example of very complicated combinatorial optimization problems. In this paper we propose a general-purpose clustering method that can determine the proper number of clusters as well as efficiently carry out clustering analysis for various types of data. The method is composed of two stages. In the first stage, two different hierarchical clustering methods are used to get a reasonably good clustering result, which is improved In the second stage by ASA(accelerated simulated annealing) algorithm equipped with specially designed perturbation schemes. Extensive experimental results are given to demonstrate the apparent usefulness of our ASA clustering method.

Spectral clustering based on the local similarity measure of shared neighbors

  • Cao, Zongqi;Chen, Hongjia;Wang, Xiang
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.769-779
    • /
    • 2022
  • Spectral clustering has become a typical and efficient clustering method used in a variety of applications. The critical step of spectral clustering is the similarity measurement, which largely determines the performance of the spectral clustering method. In this paper, we propose a novel spectral clustering algorithm based on the local similarity measure of shared neighbors. This similarity measurement exploits the local density information between data points based on the weight of the shared neighbors in a directed k-nearest neighbor graph with only one parameter k, that is, the number of nearest neighbors. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed algorithm outperforms other existing spectral clustering algorithms in terms of the clustering performance measured via the normalized mutual information, clustering accuracy, and F-measure. As an example, the proposed method can provide an improvement of 15.82% in the clustering performance for the Soybean dataset.

Environmental Survey Data Modeling using K-means Clustering Techniques

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.77-86
    • /
    • 2004
  • Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper we used k-means clustering of several clustering techniques. The k-means Clustering is classified as a partitional clustering method. We analyze 2002 Gyeongnam social indicator survey data using k-means clustering techniques for environmental information. We can use these outputs given by k-means clustering for environmental preservation and environmental improvement.

  • PDF

Clustering Approaches to Identifying Gene Expression Patterns from DNA Microarray Data

  • Do, Jin Hwan;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.279-288
    • /
    • 2008
  • The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

Transactions Clustering based on Item Similarity (아이템의 유사도를 고려한 트랜잭션 클러스터링)

  • 이상욱;김재련
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.250-257
    • /
    • 2002
  • Clustering is a data mining method, which consists in discovering interesting data distributions in very large databases. In traditional data clustering, similarity of a cluster of object is measured by pairwise similarity of objects in that paper. In view of the nature of clustering transactions, we devise in this paper a novel measurement called item similarity and utilize this to perform clustering. With this item similarity measurement, we develop an efficient clustering algorithm for target marketing in each group.

  • PDF

An Overview of Unsupervised and Semi-Supervised Fuzzy Kernel Clustering

  • Frigui, Hichem;Bchir, Ouiem;Baili, Naouel
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.254-268
    • /
    • 2013
  • For real-world clustering tasks, the input data is typically not easily separable due to the highly complex data structure or when clusters vary in size, density and shape. Kernel-based clustering has proven to be an effective approach to partition such data. In this paper, we provide an overview of several fuzzy kernel clustering algorithms. We focus on methods that optimize an fuzzy C-mean-type objective function. We highlight the advantages and disadvantages of each method. In addition to the completely unsupervised algorithms, we also provide an overview of some semi-supervised fuzzy kernel clustering algorithms. These algorithms use partial supervision information to guide the optimization process and avoid local minima. We also provide an overview of the different approaches that have been used to extend kernel clustering to handle very large data sets.

On hierarchical clustering in sufficient dimension reduction

  • Yoo, Chaeyeon;Yoo, Younju;Um, Hye Yeon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.431-443
    • /
    • 2020
  • The K-means clustering algorithm has had successful application in sufficient dimension reduction. Unfortunately, the algorithm does have reproducibility and nestness, which will be discussed in this paper. These are clear deficits for the K-means clustering algorithm; however, the hierarchical clustering algorithm has both reproducibility and nestness, but intensive comparison between K-means and hierarchical clustering algorithm has not yet been done in a sufficient dimension reduction context. In this paper, we rigorously study the two clustering algorithms for two popular sufficient dimension reduction methodology of inverse mean and clustering mean methods throughout intensive numerical studies. Simulation studies and two real data examples confirm that the use of hierarchical clustering algorithm has a potential advantage over the K-means algorithm.

A Clustering Method for Optimizing Spatial Locality (공간국부성을 최적화하는 클러스터링 방법)

  • 김홍기
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.83-90
    • /
    • 2004
  • In this paper, we study the CCD(Clustering with Circular Distance) and the COD(Clustering with Obstructed Distance) problems to be considered when objects are being clustered in a circularly search space and a search space with the presence of obstacles. We also propose a now clustering algorithm for clustering efficiently objects that the insertion or the deletion is occurring frequently in multi-dimensional search space. The distance function for solving the CCD and COD Problems is defined in the Proposed clustering algorithm. This algorithm is included a clustering method to create clusters that have a high spatial locality by minimum computation time.