• 제목/요약/키워드: In Word Probability

검색결과 115건 처리시간 0.025초

분할확률 모델을 이용한 한국어 고립단어 인식 (Isolated Word Recognition Using Segment Probability Model)

  • 김진영;성경모
    • 대한전자공학회논문지
    • /
    • 제25권12호
    • /
    • pp.1541-1547
    • /
    • 1988
  • In this paper, a new model for isolated word recognition called segment probability model is proposed. The proposed model is composed of two procedures of segmentation and modelling each segment. Therefore the spoken word is devided into arbitrary segments and observation probability in each segments is obtained using vector quantization. The proposed model is compared with pattern matching method and hidden Markov model by recognition experiment. The experimental results show that the proposed model is better than exsisting methods in terms of recognition rate and caculation amounts.

  • PDF

한국어 구어 음성 언어 이해 모델에 관한 연구 (A Study on Korean Spoken Language Understanding Model)

  • 노용완;홍광석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2435-2438
    • /
    • 2003
  • In this paper, we propose a Korean speech understanding model using dictionary and thesaurus. The proposed model search the dictionary for the same word with in input text. If it is not in the dictionary, the proposed model search the high level words in the high level word dictionary based on the thesaurus. We compare the probability of sentence understanding model with threshold probability, and we'll get the speech understanding rate. We evaluated the performance of the sentence speech understanding system by applying twenty questions game. As the experiment results, we got sentence speech understanding accuracy of 79.8%. In this case probability of high level word is 0.9 and threshold probability is 0.38.

  • PDF

음성인식을 위한 의사(疑似) N-gram 언어모델에 관한 연구 (A Study on Pseudo N-gram Language Models for Speech Recognition)

  • 오세진;황철준;김범국;정호열;정현열
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.16-23
    • /
    • 2001
  • 본 논문에서는 대어휘 음성인식에서 널리 사용되고 있는 N-gram 언어모델을 중규모 어휘의 음성인식에서도 사용할 수 있는 의사(疑似) N-gram 언어모델을 제안한다. 제안방법은 ARPA 표준형식 N-gram 언어모델의 구조를 가지면서 각 단어의 확률을 임의로 부여하는 비교적 간단한 방법으로 1-gram은 모든 단어의 출현확률을 1로 설정하고, 2-gram은 허용할 수 있는 단어시작기호 와 WORD 및 WORD와 단어종료기호 의 접속확률만을 1로 설정하며, 3-gram은 단어 시작기호 와 WORD, 단어종료기호 만의 접속을 허용하며 접속확률을 1로 설정한다. 제안방법의 유효성을 확인하기 위해 사전실험으로서 국어공학센터(KLE) 단어음성에 대해 오프라인으로 평가한 견과, 남성 3인의 452 단어에 대해 평균 97.7%의 단어인식률을 구하였다. 또한 사전실험결과를 바탕으로 1,500단어의 중규모 어휘의 증권명을 대상으로 온라인 인식실험을 수행한 결과, 남성 20명이 발성한 20단어에 대해 평균 92.5%의 단어인식률을 얻어 제안방법의 유효성을 확인하였다.

  • PDF

고립단어 인식에 유사단어 정보를 이용한 단어의 검증 (Speech Verification using Similar Word Information in Isolated Word Recognition)

  • 백창흠;이기정홍재근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1255-1258
    • /
    • 1998
  • Hidden Markov Model (HMM) is the most widely used method in speech recognition. In general, HMM parameters are trained to have maximum likelihood (ML) for training data. This method doesn't take account of discrimination to other words. To complement this problem, this paper proposes a word verification method by re-recognition of the recognized word and its similar word using the discriminative function between two words. The similar word is selected by calculating the probability of other words to each HMM. The recognizer haveing discrimination to each word is realized using the weighting to each state and the weighting is calculated by genetic algorithm.

  • PDF

한국어 어휘 중의성 해소에서 어휘 확률에 대한 효과적인 평가 방법 (An Effective Estimation method for Lexical Probabilities in Korean Lexical Disambiguation)

  • 이하규
    • 한국정보처리학회논문지
    • /
    • 제3권6호
    • /
    • pp.1588-1597
    • /
    • 1996
  • 본 논문은 한국어 어휘 중의성 해소(lexical disambiguation)에서 어휘 확률 (lexical probability) 평가방법에 대해 기술하고 있다. 통계적 접근 방법의 어휘 중 의성 해소에서는 일반적으로 말뭉치(corpus)로부터 추출된 통계 자료에 기초하여 어 휘 확률과 문맥 확률(contextual probability)을 평가한다. 한국어는 어절별로 띄어 쓰기가 이루어지므로 어절 단위로 어휘 확률을 적용하는 것이 바람직하다. 하지만 한 국어는 어절의 다양성이 심하기 때문에 상당히 큰 말뭉치를 사용하더라도 어절 단위 로는 어휘 확률을 직접 평가할 수 없는 경우가 다소 있다. 이러한 문제점을 극복하기 위해 본 연구에서는 어휘 분석 측면에서 어절의 유사성을 정의하고 이에 기반을 둔 한국어 어휘 확률 평가 방법을 제안한다. 이 방법에서는 어떤 어절에 대해 어휘 확률 을 직접 평가할 수 없는 경우 이와 어휘 분석이 유사한 어절들을 통해 간접적으로 평 가한다. 실험결과 제안된 접근방법이 한국어 어휘 중의성 해소에 효과적인 것으로 나 타나고 있다.

  • PDF

연관 단어 마이닝을 사용한 웹문서의 특징 추출 (Feature Extraction of Web Document using Association Word Mining)

  • 고수정;최준혁;이정현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권4호
    • /
    • pp.351-361
    • /
    • 2003
  • 단어의 연관성을 이용하여 문서의 특징을 추출하는 기존의 방법은 주기적으로 프로파일을 갱신해야하는 문제점, 명사구를 처리해야 하는 문제점, 명사구를 처리해야 하는 문제점, 색인어에 대한 화률을 계산해야 하는 문제점 등을 포함한다. 본 논문에서는 연관 단어 마이닝을 사용하여 문서의 특징을 효율적으로 추출하는 방법을 제안한다. 제안한 방법은 Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 백터로 표현한다. Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 벡터로 표현한다. Apriori 알고리즘을 사용하여 문서로부터 추출된 연관 단어는 이를 구성하는 수와 신뢰도와 지지도에 따라 차이를 보인다. 따라서 본 논문에서는 문서 분류의 성능을 향상 시키기 위허ㅐ 연관 단어를 구성하는 단어의 수와 지지도를 결정하는 효율적인 방법을 제안한다. 연관 단어 마이닝을 이용한 특징 추출 방법은 프로파일을 사용하지 않으므로 프로파일 갱신의 필요성이 없으며, 색인어에 대한 확률을 계산하지 않고도, Apriori 알고리즘의 신뢰도와 지지도에 따라 자동으로 명사구를 생성하므로 단어의 연관성을 이용하여 문서의 특징을 추출하는 기존 방법에 대한 문제점을 해결한다. 제안한 방법의 성능을 평가하기 위해 Naive Bayes 분류자를 이용한 문서 분류에 적용하여 정보이득, 역문헌빈도의 방법과 비교하며, 또한 색인어의 연관성과 확률 모델을 기반으로 단어의 연관성을 이용하여 문서 분류를 하는 기존의 방법과 각각 비교한다.

어절 내의 형태소 범주 패턴에 기반한 통계적 자동 띄어쓰기 시스템 (A Stochastic Word-Spacing System Based on Word Category-Pattern)

  • 강미영;정성원;권혁철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권11호
    • /
    • pp.965-978
    • /
    • 2006
  • 본 논문에서는 형태소 unigram과 한국어 어절을 형성하는 형태소 범주 패턴에 기반하여 어절을 인식하는 한국어 띄어쓰기 시스템을 구현하였다. 기존에 많이 연구된 통계 정보를 이용한 띄어쓰기 모델은 비교적 짧은 시간에 쉽게 구현할 수 있는 장점이 있지만, 한국어의 형태 유형론적 특성 때문에 발생하는 (ㄱ) 자료부족 문제와 (ㄴ) 메모리 크기 문제에 효과적으로 대처하지 못한다. 본 논문은 이 두 문제를 동시에 해결하기 위해 어절을 구성하고 있는 개별 형태소의 통계 정보와 그 형태소의 범주의 통계 정보를 기반으로 하여 띄어쓰기 후보 어절들을 추천한다. 임의의 후보 어절이 최종의 띄어쓰기 단위인 어절이 될 수 있는 확률은 (ㄱ) 해당 후보 어절 내의 각 형태소 확률과 (ㄴ) 해당 후보 어절을 구성하기 위해 그 형태소의 범주가 다른 형태소 범주와 함께 형성하는 패턴 내에서 차지하는 '범주가중치'를 고려하여 구한다. 해당 '범주가중치'는 (ㄱ) 말뭉치로부터 실제로 관찰된 어절의 확률과 (ㄴ) 후보 어절 내의 개별 형태소의 확률과 (ㄷ) 그 범주 가중치에 의해 추정된 어절 확률 사이의 평균 에러(error mean)가 최저가 되는 방향으로 학습하여 얻어진다.

A Generation-based Text Steganography by Maintaining Consistency of Probability Distribution

  • Yang, Boya;Peng, Wanli;Xue, Yiming;Zhong, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4184-4202
    • /
    • 2021
  • Text steganography combined with natural language generation has become increasingly popular. The existing methods usually embed secret information in the generated word by controlling the sampling in the process of text generation. A candidate pool will be constructed by greedy strategy, and only the words with high probability will be encoded, which damages the statistical law of the texts and seriously affects the security of steganography. In order to reduce the influence of the candidate pool on the statistical imperceptibility of steganography, we propose a steganography method based on a new sampling strategy. Instead of just consisting of words with high probability, we select words with relatively small difference from the actual sample of the language model to build a candidate pool, thus keeping consistency with the probability distribution of the language model. What's more, we encode the candidate words according to their probability similarity with the target word, which can further maintain the probability distribution. Experimental results show that the proposed method can outperform the state-of-the-art steganographic methods in terms of security performance.

유사단어 정보와 유전자 알고리듬을 이용한 HMM의 상태하중값을 사용한 단어의 검증 (Word Verification using Similar Word Information and State-Weights of HMM using Genetic Algorithmin)

  • 김광태;백창흠;홍재근
    • 대한전자공학회논문지SP
    • /
    • 제38권1호
    • /
    • pp.97-103
    • /
    • 2001
  • 현재 HMM은 음성인식에서 가장 널리 쓰이는 방법이다. 대부분의 경우 HMM의 매개변수는 훈련데이터에 대해 최대유사도를 가지도록 훈련된다. 그러나 이러한 방법은 다른 단어들에 대한 변별력을 고려하지 않는 단점이 있다. 이 논문에서는 이러한 단점을 보완하기 위해, 유사단어에 대한 정보와 두 단어 사이에 변별력을 가지는 함수를 사용하여, 인식된 단어와 유사단어만을 대상으로 재인식하는 과정을 통해 단어를 검증하는 방법을 제안하였다. 유사단어는 각 단어의 HMM에 다른 단어의 훈련음성으로 확률값을 계산하여 가장 유사한 단어를 얻었으며, 단어간에 변별력을 가지는 인식기는 각 상태에 하중값을 가지는 인식기를 사용하여 구현하였다. 단어간에 변별력을 가지는 하중값은 유전자 알고리듬을 사용하여 얻었다. 실험에서 유사단어와 변별력을 가지는 검증기의 사용으로 오인식률이 약 22% 감소하였다.

  • PDF

언어 자원과 토픽 모델의 순차 매칭을 이용한 유사 문장 계산 기반의 위키피디아 한국어-영어 병렬 말뭉치 구축 (Building a Korean-English Parallel Corpus by Measuring Sentence Similarities Using Sequential Matching of Language Resources and Topic Modeling)

  • 천주룡;고영중
    • 정보과학회 논문지
    • /
    • 제42권7호
    • /
    • pp.901-909
    • /
    • 2015
  • 본 논문은 위키피디아로부터 한국어-영어 간 병렬 말뭉치를 구축하기 위한 연구이다. 이를 위해, 언어 자원과 토픽모델의 순차 매칭 기반의 유사 문장 계산 방법을 제안한다. 먼저, 언어자원의 매칭은 위키피디아 제목으로 구성된 위키 사전, 숫자, 다음 온라인 사전을 단어 매칭에 순차적으로 적용하였다. 또한, 위키피디아의 특성을 활용하기 위해 위키 사전에서 추정한 번역 확률을 단어 매칭에 추가 적용하였다. 그리고 토픽모델로부터 추출한 단어 분포를 유사도 계산에 적용함으로써 정확도를 향상시켰다. 실험에서, 선행연구의 언어자원만을 선형 결합한 유사 문장 계산은 F1-score 48.4%, 언어자원과 모든 단어 분포를 고려한 토픽모델의 결합은 51.6%의 성능을 보였으나, 본 논문에서 제안한 언어자원에 번역 확률을 추가하여 순차 매칭을 적용한 방법은 58.3%로 9.9%의 성능 향상을 얻었고, 여기에 중요한 단어 분포를 고려한 토픽모델을 적용한 방법이 59.1%로 7.5%의 성능 향상을 얻었다.