In this paper, a new model for isolated word recognition called segment probability model is proposed. The proposed model is composed of two procedures of segmentation and modelling each segment. Therefore the spoken word is devided into arbitrary segments and observation probability in each segments is obtained using vector quantization. The proposed model is compared with pattern matching method and hidden Markov model by recognition experiment. The experimental results show that the proposed model is better than exsisting methods in terms of recognition rate and caculation amounts.
In this paper, we propose a Korean speech understanding model using dictionary and thesaurus. The proposed model search the dictionary for the same word with in input text. If it is not in the dictionary, the proposed model search the high level words in the high level word dictionary based on the thesaurus. We compare the probability of sentence understanding model with threshold probability, and we'll get the speech understanding rate. We evaluated the performance of the sentence speech understanding system by applying twenty questions game. As the experiment results, we got sentence speech understanding accuracy of 79.8%. In this case probability of high level word is 0.9 and threshold probability is 0.38.
본 논문에서는 대어휘 음성인식에서 널리 사용되고 있는 N-gram 언어모델을 중규모 어휘의 음성인식에서도 사용할 수 있는 의사(疑似) N-gram 언어모델을 제안한다. 제안방법은 ARPA 표준형식 N-gram 언어모델의 구조를 가지면서 각 단어의 확률을 임의로 부여하는 비교적 간단한 방법으로 1-gram은 모든 단어의 출현확률을 1로 설정하고, 2-gram은 허용할 수 있는 단어시작기호 와 WORD 및 WORD와 단어종료기호 의 접속확률만을 1로 설정하며, 3-gram은 단어 시작기호 와 WORD, 단어종료기호 만의 접속을 허용하며 접속확률을 1로 설정한다. 제안방법의 유효성을 확인하기 위해 사전실험으로서 국어공학센터(KLE) 단어음성에 대해 오프라인으로 평가한 견과, 남성 3인의 452 단어에 대해 평균 97.7%의 단어인식률을 구하였다. 또한 사전실험결과를 바탕으로 1,500단어의 중규모 어휘의 증권명을 대상으로 온라인 인식실험을 수행한 결과, 남성 20명이 발성한 20단어에 대해 평균 92.5%의 단어인식률을 얻어 제안방법의 유효성을 확인하였다.
Hidden Markov Model (HMM) is the most widely used method in speech recognition. In general, HMM parameters are trained to have maximum likelihood (ML) for training data. This method doesn't take account of discrimination to other words. To complement this problem, this paper proposes a word verification method by re-recognition of the recognized word and its similar word using the discriminative function between two words. The similar word is selected by calculating the probability of other words to each HMM. The recognizer haveing discrimination to each word is realized using the weighting to each state and the weighting is calculated by genetic algorithm.
본 논문은 한국어 어휘 중의성 해소(lexical disambiguation)에서 어휘 확률 (lexical probability) 평가방법에 대해 기술하고 있다. 통계적 접근 방법의 어휘 중 의성 해소에서는 일반적으로 말뭉치(corpus)로부터 추출된 통계 자료에 기초하여 어 휘 확률과 문맥 확률(contextual probability)을 평가한다. 한국어는 어절별로 띄어 쓰기가 이루어지므로 어절 단위로 어휘 확률을 적용하는 것이 바람직하다. 하지만 한 국어는 어절의 다양성이 심하기 때문에 상당히 큰 말뭉치를 사용하더라도 어절 단위 로는 어휘 확률을 직접 평가할 수 없는 경우가 다소 있다. 이러한 문제점을 극복하기 위해 본 연구에서는 어휘 분석 측면에서 어절의 유사성을 정의하고 이에 기반을 둔 한국어 어휘 확률 평가 방법을 제안한다. 이 방법에서는 어떤 어절에 대해 어휘 확률 을 직접 평가할 수 없는 경우 이와 어휘 분석이 유사한 어절들을 통해 간접적으로 평 가한다. 실험결과 제안된 접근방법이 한국어 어휘 중의성 해소에 효과적인 것으로 나 타나고 있다.
단어의 연관성을 이용하여 문서의 특징을 추출하는 기존의 방법은 주기적으로 프로파일을 갱신해야하는 문제점, 명사구를 처리해야 하는 문제점, 명사구를 처리해야 하는 문제점, 색인어에 대한 화률을 계산해야 하는 문제점 등을 포함한다. 본 논문에서는 연관 단어 마이닝을 사용하여 문서의 특징을 효율적으로 추출하는 방법을 제안한다. 제안한 방법은 Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 백터로 표현한다. Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 벡터로 표현한다. Apriori 알고리즘을 사용하여 문서로부터 추출된 연관 단어는 이를 구성하는 수와 신뢰도와 지지도에 따라 차이를 보인다. 따라서 본 논문에서는 문서 분류의 성능을 향상 시키기 위허ㅐ 연관 단어를 구성하는 단어의 수와 지지도를 결정하는 효율적인 방법을 제안한다. 연관 단어 마이닝을 이용한 특징 추출 방법은 프로파일을 사용하지 않으므로 프로파일 갱신의 필요성이 없으며, 색인어에 대한 확률을 계산하지 않고도, Apriori 알고리즘의 신뢰도와 지지도에 따라 자동으로 명사구를 생성하므로 단어의 연관성을 이용하여 문서의 특징을 추출하는 기존 방법에 대한 문제점을 해결한다. 제안한 방법의 성능을 평가하기 위해 Naive Bayes 분류자를 이용한 문서 분류에 적용하여 정보이득, 역문헌빈도의 방법과 비교하며, 또한 색인어의 연관성과 확률 모델을 기반으로 단어의 연관성을 이용하여 문서 분류를 하는 기존의 방법과 각각 비교한다.
본 논문에서는 형태소 unigram과 한국어 어절을 형성하는 형태소 범주 패턴에 기반하여 어절을 인식하는 한국어 띄어쓰기 시스템을 구현하였다. 기존에 많이 연구된 통계 정보를 이용한 띄어쓰기 모델은 비교적 짧은 시간에 쉽게 구현할 수 있는 장점이 있지만, 한국어의 형태 유형론적 특성 때문에 발생하는 (ㄱ) 자료부족 문제와 (ㄴ) 메모리 크기 문제에 효과적으로 대처하지 못한다. 본 논문은 이 두 문제를 동시에 해결하기 위해 어절을 구성하고 있는 개별 형태소의 통계 정보와 그 형태소의 범주의 통계 정보를 기반으로 하여 띄어쓰기 후보 어절들을 추천한다. 임의의 후보 어절이 최종의 띄어쓰기 단위인 어절이 될 수 있는 확률은 (ㄱ) 해당 후보 어절 내의 각 형태소 확률과 (ㄴ) 해당 후보 어절을 구성하기 위해 그 형태소의 범주가 다른 형태소 범주와 함께 형성하는 패턴 내에서 차지하는 '범주가중치'를 고려하여 구한다. 해당 '범주가중치'는 (ㄱ) 말뭉치로부터 실제로 관찰된 어절의 확률과 (ㄴ) 후보 어절 내의 개별 형태소의 확률과 (ㄷ) 그 범주 가중치에 의해 추정된 어절 확률 사이의 평균 에러(error mean)가 최저가 되는 방향으로 학습하여 얻어진다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권11호
/
pp.4184-4202
/
2021
Text steganography combined with natural language generation has become increasingly popular. The existing methods usually embed secret information in the generated word by controlling the sampling in the process of text generation. A candidate pool will be constructed by greedy strategy, and only the words with high probability will be encoded, which damages the statistical law of the texts and seriously affects the security of steganography. In order to reduce the influence of the candidate pool on the statistical imperceptibility of steganography, we propose a steganography method based on a new sampling strategy. Instead of just consisting of words with high probability, we select words with relatively small difference from the actual sample of the language model to build a candidate pool, thus keeping consistency with the probability distribution of the language model. What's more, we encode the candidate words according to their probability similarity with the target word, which can further maintain the probability distribution. Experimental results show that the proposed method can outperform the state-of-the-art steganographic methods in terms of security performance.
현재 HMM은 음성인식에서 가장 널리 쓰이는 방법이다. 대부분의 경우 HMM의 매개변수는 훈련데이터에 대해 최대유사도를 가지도록 훈련된다. 그러나 이러한 방법은 다른 단어들에 대한 변별력을 고려하지 않는 단점이 있다. 이 논문에서는 이러한 단점을 보완하기 위해, 유사단어에 대한 정보와 두 단어 사이에 변별력을 가지는 함수를 사용하여, 인식된 단어와 유사단어만을 대상으로 재인식하는 과정을 통해 단어를 검증하는 방법을 제안하였다. 유사단어는 각 단어의 HMM에 다른 단어의 훈련음성으로 확률값을 계산하여 가장 유사한 단어를 얻었으며, 단어간에 변별력을 가지는 인식기는 각 상태에 하중값을 가지는 인식기를 사용하여 구현하였다. 단어간에 변별력을 가지는 하중값은 유전자 알고리듬을 사용하여 얻었다. 실험에서 유사단어와 변별력을 가지는 검증기의 사용으로 오인식률이 약 22% 감소하였다.
본 논문은 위키피디아로부터 한국어-영어 간 병렬 말뭉치를 구축하기 위한 연구이다. 이를 위해, 언어 자원과 토픽모델의 순차 매칭 기반의 유사 문장 계산 방법을 제안한다. 먼저, 언어자원의 매칭은 위키피디아 제목으로 구성된 위키 사전, 숫자, 다음 온라인 사전을 단어 매칭에 순차적으로 적용하였다. 또한, 위키피디아의 특성을 활용하기 위해 위키 사전에서 추정한 번역 확률을 단어 매칭에 추가 적용하였다. 그리고 토픽모델로부터 추출한 단어 분포를 유사도 계산에 적용함으로써 정확도를 향상시켰다. 실험에서, 선행연구의 언어자원만을 선형 결합한 유사 문장 계산은 F1-score 48.4%, 언어자원과 모든 단어 분포를 고려한 토픽모델의 결합은 51.6%의 성능을 보였으나, 본 논문에서 제안한 언어자원에 번역 확률을 추가하여 순차 매칭을 적용한 방법은 58.3%로 9.9%의 성능 향상을 얻었고, 여기에 중요한 단어 분포를 고려한 토픽모델을 적용한 방법이 59.1%로 7.5%의 성능 향상을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.