• Title/Summary/Keyword: In Vivo and In Vitro Function

Search Result 300, Processing Time 0.022 seconds

Circular RNA hsa_circ_0005556 Accelerates Gastric Cancer Progression by Sponging miR-4270 to Increase MMP19 Expression

  • Shen, Duo;Zhao, Hongyu;Zeng, Peng;Song, Jinyun;Yang, Yiqiong;Gu, Xuefeng;Ji, Qinghua;Zhao, Wei
    • Journal of Gastric Cancer
    • /
    • v.20 no.3
    • /
    • pp.300-312
    • /
    • 2020
  • Purpose: Circular RNAs (circRNAs) are a new class of RNA molecules whose function is largely unknown. There is a growing evidence that circRNAs play an important regulatory role in the progression of a variety of human cancers. However, the exact roles and the mechanisms of circRNAs in gastric cancer are not clear. In this study, we aimed to elucidate the mechanism of hsa_circ_0005556. Materials and Methods: Real-time quantitative polymerase chain reaction was used to detect the expression of hsa_circ_0005556, miR-4270, and matrix metalloproteinase-19 (MMP19) in gastric cancer tissues and cell lines. The expression of hsa_circ_0005556 in gastric cancer cells was silenced by lentivirus, and cell proliferation, invasion, migration, and tumorigenesis in nude mice were assessed to evaluate the function of hsa_circ_0005556 in gastric cancer. Results: The expression of hsa_circ_0005556 in gastric cancer tissues and gastric cancer cell lines was higher compared to normal controls. In vitro, the downregulation of hsa_ circ_0005556 significantly inhibited proliferation, migration, and invasion of gastric cancer cells. In vivo, the downregulation of hsa_circ_0005556 suppressed tumor growth in nude mice. Conclusions: Our study shows that the hsa_circ_0005556/miR-4270/MMP19 axis is involved in proliferation, migration, and invasion of gastric cancer cells through the competing endogenous RNA (ceRNA) mechanism.

ROLE OF REACTIVE OXYGEN SPECIES IN MALE INFERTILITY

  • Sharma, Rakesh K.;Agarwal, Ashok
    • 대한생식의학회:학술대회논문집
    • /
    • 2000.06a
    • /
    • pp.13-28
    • /
    • 2000
  • Human spermatozoa exhibit a capacity to generate ROS and initiate peroxidation of the unsaturated fatty acids in the sperm plasma membrane, which plays a key role in the etiology of male infertility. The short half-life and limited diffusion of these molecules is consistent with their physiologic role in key biological events such as acrosome reaction and hyperactivation. The intrinsic reactivity of these metabolites in peroxidative damage induced by ROS, particularly $H_2O_2$ and the superoxide anion, has been proposed as a major cause of defective sperm function in cases of male infertility. The number of antioxidants known to attack different stages of peroxidative damage is growing, and it will be of interest to compare alpha-tocopherol and ascorbic acid with these for their therapeutic potential in vitro and in vivo. Both spermatozoa and leukocytes generate ROS, although leukocytes produce much higher levels. The clinical significance of leukocyte presence in semen is controversial. Seminal plasma confers some protection against ROS damage because it contains enzymes that scavenge ROS, such as catalase and superoxide dismutase. A variety of defense mechanisms comprising a number of antioxidants can be employed to reduce or overcome oxidative stress caused by excessive ROS. Determination of male infertility etiology is important, as it will help us develop effective therapies to overcome excessive ROS generation. ROS can have both beneficial and detrimental effects on the spermatozoa and the balancing between the amounts of ROS produced and the amounts scavenged at any moment will determine whether a given sperm function will be promoted or jeopardized. Accurate assessment of ROS levels and, subsequently, OS is Vital, as this will help clinicians both elucidate the fertility status and identify the subgroups of patients that respond or do not respond to these therapeutic strategies. The overt commercial claims of antioxidant benefits and supplements for fertility purposes must be cautiously looked into, until proper multicentered clinical trials are studied. From the current data it appears that no Single adjuvant will be able to enhance the fertilizing capacity of sperm in infertile men, and a combination of the possible strategies that are not toxic at the dosage used would be a feasible approach.

  • PDF

Homing and Restorative Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Cisplatin Injured Ovaries in Rats

  • Liu, Jiabin;Zhang, Haiying;Zhang, Yun;Li, Nan;Wen, Yuku;Cao, Fanglei;Ai, Hao;Xue, Xiaoou
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.865-872
    • /
    • 2014
  • Premature ovarian failure (POF) is a long-term adverse effect of chemotherapy treatment. However, current available treatment regimens are not optimal. Emerging evidence suggests that bone marrow-derived mesenchymal stem cells (BMSCs) could restore the structure and function of injured tissues, but the homing and restorative effects of BMSCs on chemotherapy injured ovaries are still not clear. In this study, we found that granulosa cell (GC) apoptosis induced by cisplatin was reduced when BMSCs were migrated to granulosa cells (GCs) in vitro. Chemotherapy-induced POF was induced by intraperitoneal injection of cisplatin in rats. BMSCs labeled with enhanced green fluorescent protein (EGFP) were injected into the rats via the tail vein to investigate the homing and distribution of BMSCs in vivo. The number of BMSCs in the ovarian hilum and medulla was greater than in the cortex, but no BMSCs were found in the follicles and corpus lutea. In addition, the BMSCs treatment group's antral follicle count and estradiol levels increased after 30 days, compared with the POF group. Hence, our study demonstrates that intravenously delivered BMSCs can home to the ovaries, and restore its structure and function in POF model rats.

Alteration of Ryanodine-receptors in Cultured Rat Aortic Smooth Muscle Cells

  • Kim, Eun-Ji;Kim, Dong-Kwan;Kim, Shin-Hye;Lee, Kyung-Moo;Park, Hyung-Seo;Kim, Se-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.431-436
    • /
    • 2011
  • Vascular smooth muscle cells can obtain a proliferative function in environments such as atherosclerosis in vivo or primary culture in vitro. Proliferation of vascular smooth muscle cells is accompanied by changes in ryanodine receptors (RyRs). In several studies, the cytosolic $Ca^{2+}$ response to caffeine is decreased during smooth muscle cell culture. Although caffeine is commonly used to investigate RyR function because it is difficult to measure $Ca^{2+}$ release from the sarcoplasmic reticulum (SR) directly, caffeine has additional off-target effects, including blocking inositol trisphosphate receptors and store-operated $Ca^{2+}$ entry. Using freshly dissociated rat aortic smooth muscle cells (RASMCs) and cultured RASMCs, we sought to provide direct evidence for the operation of RyRs through the $Ca^{2+}$- induced $Ca^{2+}$ -release pathway by directly measuring $Ca^{2+}$ release from SR in permeabilized cells. An additional goal was to elucidate alterations of RyRs that occurred during culture. Perfusion of permeabilized, freshly dissociated RASMCs with $Ca^{2+}$ stimulated $Ca^{2+}$ release from the SR. Caffeine and ryanodine also induced $Ca^{2+}$ release from the SR in dissociated RASMCs. In contrast, ryanodine, caffeine and $Ca^{2+}$ failed to trigger $Ca^{2+}$ release in cultured RASMCs. These results are consistent with results obtained by immunocytochemistry, which showed that RyRs were expressed in dissociated RASMCs, but not in cultured RASMCs. This study is the first to demonstrate $Ca^{2+}$ release from the SR by cytosolic $Ca^{2+}$ elevation in vascular smooth muscle cells, and also supports previous studies on the alterations of RyRs in vascular smooth muscle cells associated with culture.

Effects of Job's Tear(Yul-Moo) Extracts on Mouse Immune Cell Activation (율무 추출물이 마우스 면역세포 활성에 미치는 영향)

  • Ryu, Hye-Suk;Kim, Hyeon-Suk
    • Journal of the Korean Dietetic Association
    • /
    • v.11 no.1
    • /
    • pp.44-50
    • /
    • 2005
  • Natural products are increasingly appreciated as a lead for drug discovery and development. A number of investigators have studied various activities of natural products and have found that they have not only nutritional effects but also beneficial properties to cure various diseases and to maintain good health. Job's Tear(Yul-Moo) is a grass crop that have long been used in traditional medicine and a nourishing food. Job's Tear has been reported to exhibit anti-inflammatory, stomachic, antiallergic activity, and antispastic effects and has been used in China for the treatment of warts, rheumatism, and neuralgia although its mechanism remains unclear. Previous results in our laboratory demonstrated that the ethanol extract and water extract of Job's Tear exerted an immune regulatory function on mice cells in vitro. The present study was performed to investigate the ex vivo effect of Job's Tear on immune function. Seven to eight weeks old mices(Balb/c) were fed ad libitum on chow diet and water extract of Job's Tear were orally administrated every other day for two or four weeks at two different concentrations (50 and 500mg/kg B.W.). Proliferation of mice spenocytes and antibody production to sheep red blood cells(SRBC) using hemolytic plague forming cell assay were used to indicate the immune activity. Splenocytes proliferation of Job's Tear with mitogen stimulation such as Con A and LPS was enhanced at 50 mg/kg B.W. concentrations compared to those of control group. In case of antibody production to sheep red blood cells, the number of antibody- secreting cells was increased by administration of 50mg/kg B.W. concentration in mice immunized as a T-dependent antigen. From the present study, Job's Tear water extracts may be suggested to stimulate the mice immune response by enhancing the splenocytes proliferation and the number of plague forming cells.

  • PDF

Effect of Pahyeolsandong-tang (Poxiesanteng-tang) in Tibia Fracture-induced Mice (경골 파혈산동탕(破血散疼湯)이 골절 생쥐의 골 유합에 미치는 영향)

  • Shin, Woo-Suk;Parichuk, Kira;Cha, Yun-Yeop
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.4
    • /
    • pp.1-16
    • /
    • 2020
  • Objectives The main purpose of this study was to evaluate the bone healing effect of Pahyeolsandong-tang (PHT)(Poxiesanteng-tang) extract in tibia fracture-induced mice. Methods PHT was extracted using a solution of 35% ethanol in 60℃ for 8 hours. Mice were randomly divided into 4 groups (normal, control, PHT 50 and PHT 100). Mice of experimental groups were medicated with PHT 50 or 100 mg/kg for 7 to 21 days. To clarify the effect of bone fracture healing, relative messenger RNA (mRNA) expressions of osteocalcin (OCN), runt-related transcription factor 2 (Runx2), osterix (OSX), Sox9, collagen type II alpha 1 chain (Col2a1), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) were examined. Results In in vitro experiment, relative mRNA expression of OCN, Runx2, Col2a1 was significantly increased in PHT treated group to compare with control differentiation group. In in vivo experiment, relative mRNA expression of OCN, Runx2, OSX, Sox9, Col2a1, RANKL, OPG was significantly increased in PHT treated group. Conclusions This study showed that PHT accelerates bone fracture healing through the activation of osteoclasts and osteoblasts. It was showed that PHT significantly promotes osteoblasts differentiation by osteoblast differentiation markers such as OCN, Runx2, Col1a2. Also it was investigated that PHT had stimulatory effect on osteoblasts function through enhancing OCN, Runx2, OSX, Sox9, Col2a1 and, osteoclasts function through enhancing RANKL and OPG markers. PHT effectively promotes bone fracture healing process through activation of osteoblasts and osteoclasts.

Effect of Heat-epimerized-catechin-mixture Rich in Gallocatechin-3-gallate on Skin Barrier Recovery (갈로카테킨-3-갈레이트가 풍부한 열전환 카테킨의 피부 장벽 회복에 대한 개선 효과)

  • Kim, Jeong-Kee;Shin, Hyun-Jung;Lee, Sang-Min;Jeon, Hee-Young;Lee, Sang-Jun;Lee, Byeong-Gon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.93-99
    • /
    • 2008
  • Until now, (-)-epigallocatechin-3-gallate(EGCG) is known as the most powerful antioxidant among green tea catechins having many beneficial effects on human skin. Considering that the content of catechins is variable according to many conditions such as solvent, temperature and pressure, we prepared the heat-epimerized-EGCG-mixture (HE-EGCG-mix) containing high content of gallocatechin-3-gallate(GCG) by epimerization during autoclaving process and found out its optimal condition for maximizing conversion from EGCG to GCG. To investigate the effects of EGCG and HE-EGCG-mix on skin barrier function, we performed in vivo experiments with hairless mice. We found that HE-EGCG-mix has more potent stimulating activity than EGCG for the production of involucrin 7(INV7) and for recovery of barrier function in SKH-1 mice. Also, we found that GCG stimulates $PPAR-{\alpha}$ transactivation more effectively than EGCG in vitro by transient transfection assay for $PPAR-{\alpha}$ activation activity. These imply that HE-EGCG-mix consisting of high content of GCG should stimulate more efficiently recovery of skin barrier through PPAR-mediated-kerationocyte differentiation than EGCG. In conclusion, our study may provide a possibility that GCG, the C-2 epimer of EGCG, could be a potentially effective agent for development of new cosmetics or health foods for recovery of skin barrier.

Interleukin-7 Enhances the in Vivo Anti-tumor Activity of Tumor-reactive CD8+ T cells with Induction of IFN-gamma in a Murine Breast Cancer Model

  • Yuan, Chun-Hui;Yang, Xue-Qin;Zhu, Cheng-Liang;Liu, Shao-Ping;Wang, Bi-Cheng;Wang, Fu-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.265-271
    • /
    • 2014
  • Interleukin-7 (IL-7) is a potent anti-apoptotic cytokine that enhances immune effector cell functions and is essential for lymphocyte survival. While it known to induce differentiation and proliferation in some haematological malignancies, including certain types of leukaemias and lymphomas, little is known about its role in solid tumours, including breast cancer. In the current study, we investigated whether IL-7 could enhance the in vivo antitumor activity of tumor-reactive $CD8^+$ T cells with induction of IFN-${\gamma}$ in a murine breast cancer model. Human IL-7 cDNA was constructed into the eukaryotic expression plasmid pcDNA3.1, and then the recombinational pcDNA3.1-IL-7 was intratumorally injected in the TM40D BALB/C mouse graft model. Serum and intracellular IFN-${\gamma}$ levels were measured by ELISA and flow cytometry, respectively. $CD8^+$ T cell-mediated cytotoxicity was analyzed using the MTT method. Our results showed that IL-7 administration significantly inhibited tumor growth from day 15 after direct intratumoral injection of pcDNA3.1-IL-7. The anti-tumor effect correlated with a marked increase in the level of IFN-${\gamma}$ and breast cancer cells-specific CTL cytotoxicity. In vitro cytotoxicity assays showed that IL-7-treatment could augment cytolytic activity of $CD8^+$ T cells from tumor bearing mice, while anti-IFN-${\gamma}$ blocked the function of $CD8^+$ T cells, suggesting that IFN-${\gamma}$ mediated the cytolytic activity of $CD8^+$ T cells. Furthermore, in vivo neutralization of $CD8^+$ T lymphocytes by CD8 antibodies reversed the antitumor benefit of IL-7. Thus, we demonstrated that IL-7 exerts anti-tumor activity mainly through activating $CD8^+$ T cells and stimulating them to secrete IFN-${\gamma}$ in a murine breast tumor model. Based on these results, our study points to a potential novel way to treat breast cancer and may have important implications for clinical immunotherapy.

Effects of Chitosan on the Induction of Renal Dipeptidase (RDPase) from the Proximal Tubules (신장의 근위세뇨관에서 Renal Dipeptidase(RDPase)의 유도에 관한 키토산의 효과)

  • Kim, Young-Ho;Yoon, Hyun-Joong;Park, Haeng-Soon;Lee, Myung-Yul;Kim, Jong-Se
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.968-972
    • /
    • 2005
  • The purpose of this study was to evaluate the effects of chitosan, which is deacetylated derivative of chitin, on the renal function. Renal dipeptidase (RDPase, membrane dipeptidase, dehydropeptidase 1, EC 3.4.13.19) is glycosyl phosphatidyl-inositol (GPI)-anchored ectoenzyme of renal proximal tubular microvilli and was related with renal disease including acute renal failure, pyelitis and nephritis. The released RDPase and Udpase activities were assayed by modified fluorometric method. In vitro experimental groups were consisted of group 1, the concentration ranges of 0, 0.01, 0.05 and $0.1\%$ chitosan only, group 2, the concentration ranges of 1, 2 and 4 mM glycerol only, and group 3, the concentration ranges of 0, 0.01, 0.05 and $0.1\%$ chitosan in the presence of glycerol (4 mM). In vivo experimental groups were consisted of group 1 in which rats were treated with glycerol for the purpose of glycerol-induced renal damage, and group 2 in which rats were treated with chitosan plus glycerol. The RDPase release of 0.01, 0.05, and $0.1\%$ chitosan groups were increased in the concentration dependent manner. The RDPase release of 1, 2, and 4mM glycerol groups were decreased in the concentration dependent manner. Chitosan in the presence of glycerol restored the released RDPase activity in the proximal tubules. In vivo, chitosan inhibited the decrease of RDPase release by glycerol in the kidney and blocked the decrease of Udpase activity by glycerol in urine. These results indicated that chitosan was possible as a functional food to control renal function and its diseases.

Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD

  • Zehong Yang;Yuanyuan Yu ;Nannan Sun;Limian Zhou;Dong Zhang;HaiXin Chen ;Wei Miao ;Weihang Gao ;Canyang Zhang ;Changhui Liu ;Xiaoying Yang ;Xiaojie Wu ;Yong Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.376-384
    • /
    • 2023
  • Background: Hepatic lipid disorder impaired mitochondrial homeostasis and intracellular redox balance, triggering development of non-alcohol fatty liver disease (NAFLD), while effective therapeutic approach remains inadequate. Ginsenosides Rc has been reported to maintain glucose balance in adipose tissue, while its role in regulating lipid metabolism remain vacant. Thus, we investigated the function and mechanism of ginsenosides Rc in defending high fat diet (HFD)-induced NAFLD. Methods: Mice primary hepatocytes (MPHs) challenged with oleic acid & palmitic acid were used to test the effects of ginsenosides Rc on intracellular lipid metabolism. RNAseq and molecular docking study were performed to explore potential targets of ginsenosides Rc in defending lipid deposition. Wild type and liver specific sirtuin 6 (SIRT6, 50721) deficient mice on HFD for 12 weeks were subjected to different dose of ginsenosides Rc to determine the function and detailed mechanism in vivo. Results: We identified ginsenosides Rc as a novel SIRT6 activator via increasing its expression and deacetylase activity. Ginsenosides Rc defends OA&PA-induced lipid deposition in MPHs and protects mice against HFD-induced metabolic disorder in dosage dependent manner. Ginsenosides Rc (20mg/kg) injection improved glucose intolerance, insulin resistance, oxidative stress and inflammation response in HFD mice. Ginsenosides Rc treatment accelerates peroxisome proliferator activated receptor alpha (PPAR-α, 19013)-mediated fatty acid oxidation in vivo and in vitro. Hepatic specific SIRT6 deletion abolished ginsenoside Rc-derived protective effects against HFD-induced NAFLD. Conclusion: Ginsenosides Rc protects mice against HFD-induced hepatosteatosis by improving PPAR-α-mediated fatty acid oxidation and antioxidant capacity in a SIRT6 dependent manner, and providing a promising strategy for NAFLD.