• Title/Summary/Keyword: In Vitro maturation

Search Result 749, Processing Time 0.028 seconds

Effect of Humulus japonicus Extract on Sperm Motility, Fertilization Status and Subsequent Preimplantation Embryo Development in Cattle (소에서 정자활성, 수정 양상 및 착상전 지속적 수정란 발달에 있어서 환삼덩굴 추출액의 효과)

  • Min, Sung-Hun;Kim, Jin-Woo;Do, Geon-Yeop;Lee, Yong-Hee;Ahn, Jae-Hyun;Chae, Sung-Kyu;Kim, Byung Oh;Park, Humdai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.38 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • Humulus japonicus is an ornamental plant in the Cannabaceae family. Although the mode of action of Humulus japonicus is not fully understood, a strong relationship was observed between anti-inflammatory and anticancer in some types of cells. Recent studies also have shown that Humulus japonicus possesses anti-inflammatory activities and may significantly improve antioxidant potential in Raw 264.7 macrophage cells. Thus, the aim of this study was evaluated the effect of Humulus japonicus extract on sperm motility and subsequent preimplantation developmental competence of the bovine embryos. After in vitro maturation, the oocytes with sperms were exposed in in vitro fertilization (IVF) medium supplemented with Humulus japonicus extract (0.01, 0.05, $0.1{\mu}g/mL$, respectively) for 1 day. In our results, exposure of IVF medium to Humulus japonicus extract did not affect sperm motility and percentage of penetrated oocytes but ROS intensity was significantly decreased by $0.01{\mu}g/mL$ compared with other groups (p< 0.05). Moreover, treatment with $0.01{\mu}g/mL$ of Humulus japonicus extract was higher the frequency of blastocyst formation than the any other groups (p<0.05). Otherwise, treatment with $0.01{\mu}g/mL$ of Humulus japonicus extract not increased the total cell number but reduced apoptotic-positive nuclei number. In conclusion, our results indicate that supplementation of Humulus japonicus extract in IVF medium may have important implications for improving early embryonic development in bovine embryos.

Effect of Concentration and Exposure Duration of FBS on Parthenogenetic Development of Porcine Follicular Oocytes

  • Kim, Hyun-Jong;Cho, Sang-Rae;Choe, Chang-Yong;Choi, Sun-Ho;Son, Dong-Soo;Kim, Sung-Jae;Sang, Byung-Don;Han, Man-Hye;Ryu, Il-Sun;Kim, In-Cheul;Kim, Il-Hwa;Lee, Woon-Kyu;Im, Kyung-Soon
    • Journal of Embryo Transfer
    • /
    • v.22 no.4
    • /
    • pp.245-249
    • /
    • 2007
  • The aim of present experiment was to examine hatching rate as in vitro indicator of viability of porcine embryos before early stage embryo transfer such as zygotes or 2-cell stage embryos. Cumulus-oocyte complexes (COCs) collected from ovaries were matured in North Carolina State University 23 (NCSU-23) containing 10% porcine follicular fluid (pFF), 10 ng/ml epidermal growth factor (EGF), $10{\mu}g/ml$ follicle stimulating hormone (FSH), $35{\mu}g/ml$ luteinizing hormone (LH), and 1mg/ml cysteine. After 24 hours, the COCs were transferred to the same medium without hormones. After 65h of maturation, oocytes were exposed to phosphate buffered saline (PBS) with 7% ethanol (v/v) for 7 minutes, and then the oocytes were washed and cultured in tissue culture medium (TCM) 199 containing 5 ug/ml cytochalasin B for 5h at $38.5^{\circ}C$ in an atmosphere of 5% $CO_2$ and 95% air with high humidity. After cytochalasin B treatment, the presumptive parthenotes were cultured in porcine zygote medium (PZM)-5 and cleavage of the parthenotes was assessed at 72h of activation, Normally cleaved parthenotes were cultured for an additional 8 days to evaluate their ability to develop to blastocyst and hatching stages. The fetal bovine serum (FBS) were added at Day 4 or 5 with concentrations of 2.5, 5 or 10%. The blastocyst rates were ranged within $39.1{\sim}70%$ in each treatment. However hatching rate was dramatically decreased in non-addition group. In this experiment, embryo viability in female reproductive tract may be estimated before embryo transfer with in vitro culture adding FBS by hatching ability.

Parthenogenetic Activation of Pig Oocytes Matured in-Vitro with Ethanol and Electrical Stimulus

  • Y. J. Chang;Y. J. Yi;Kim, M. Y.;Park, C. S.
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.62-62
    • /
    • 2003
  • This study was carried out to investigate the effects of activation agents on parthenogenetic activation of pig oocytes matured in vitro. The medium used for oocyte maturation was tissue culture medium (TCM) 199 supplemented with 26.19 mM sodium bicarbonate, 0.9 mM sodium pyruvate, 10 $\mu\textrm{g}$/ml insulin, 2 $\mu\textrm{g}$/ml vitamin $B_{l2}$, 25 mM Hepes, 10 $\mu\textrm{g}$/ml bovine apotransferrin, 150 $\mu$M cysteamine, 10 IU/ml PMSG, 10 IU/ml hCG, 10 ng/ml EGF, 0.4% BSA, 75 $\mu\textrm{g}$/ml sodium penicillin G, 50 $\mu\textrm{g}$/ml streptomycin sulfate and 10% pFF. After about 22 h of culture, oocytes were cultured without cysteamine and hormones for 22 h at 38.5$^{\circ}C$, 5% $CO_2$ in air. Cumulus-free oocytes involving first polar body were activated by exposure to various concentrations of ethanol and exposure time of ethanol in Hepes-buffered NCSU23 medium. Also, oocytes were activated by electric pulse alone or combination with ethanol. For electrical activation, oocytes were rinsed twice in 0.3 M mannitol solution supplemented with 0.1 mM CaC1$_2$, 0.2 mM MgC1$_2$, 0.5 mM Hopes and 0.01% BSA, and transferred to a chamber consisting of two electrodes 1 mm apart which was overlaid with the same activation solution. Oocytes were activated with a single DC pulse of 1.3 ㎸/cm for 30 $\mu$sec. After activation treatments, oocytes were washed three times with Hepes-buffered NCSU23 medium and were washed twice with NCSU23 culture medium containing 0.4% BSA, and then cultured in 500 ${mu}ell$ of the same medium for 20 h at 38.5$^{\circ}C$, 5% $CO_2$ in air. The activation rates of oocytes were higher in 6, 7 and 8% ethanol concentrations compared with 0, 5, 9 and 10% ethanol concentrations. Significantly more oocytes (29.3~33.7%) were activated in the exposure for 8, 10, 12 and 15 min than those in the exposure for 0 and 5 min, but there was no difference due to exposure to 8% ethanol for 8 to 15 min. Electric pulse treatment followed by exposure to ethanol significantly improved the rate of oocyte activation (61.9%) compared with that of other 3 treatments. In conclusion, the optimal activation treatment of ethanol exposure alone for the in-vitro matured pig oocytes was 8% ethanol for 8 to 15 min. Electric pulse treatment followed by ethanol exposure significantly improved the rate of activation.n.

  • PDF

Studies on the Early Development of the Mouse Embryo Transplanted in the Anterior Chamber of the Eye (眼前房내에 이식한 생쥐배의 초기발생에 관한 연구)

  • Cho, Wan Kyoo;Kim, Moon Kyoo
    • The Korean Journal of Zoology
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 1972
  • Two-Cell mouse embryos were incubated in the anterior chamber of the rat eye, which has been known as the best place among other animals' for the mouse ovum maturation, in order to observe the capability of their early development. Within 120 hours after incubation, 71.0% of two-cell embryos have developed to the blastocysts in the male rat eye, while only 38.5% in the eye of the same mouse as donated two-cell embryos. Thus, the rat eye chamber provides more favourable environment to the embryos than the mouse itself. The results are consistent with those of the previous studies comparing the maturation of the mouse follicular oocytes in the mouse and the rat eye chamber. Although the aqueous humor which is filled in the anterior chamber of the eye is characterized by its specific properties, being of higher osmolarity, higher concentrations of ascorbic acid, pyruvate and lactate, but lower of proteins and lower temperature than those in blood or lymph serum, The embryos are able to under-take their cleavage as normal as in vivo or in vitro. Concerning with a number of studies in vitro on the development of the mouse embryos which are requiring a very limited condition, the fact that they are able to manage their further development under very different enviroment from our knowledges would provide us a moment to understand their behavior during the early development. The difference of the proportion of the developed blastocysts between in the mouse eye chamber and in the rat can possibly be resulted from the species specific difference in the physicochemical properties between their eye chambers. This assumption is based upon the findings by many investigators who chmpared the nature of the eye chamber of various animals. As a consequence, the rat eye chamber might consist of better properties for the embryonal growth than the mouse eye chamber. The mouse embryos cleaved with a delayed period. In normal development they complete almost the cleavage within 94 hours after fertilization. However, in the present studies, 81.1% of two-cell embryos developed to the blastocysts and the morula in 120 hours in the eye chamber, assumed to be about 154 hours after fertilization. Such delay in development would be caused mainly by the low temperature of the eye chamber. At present we can make two assumptions to explain the capability of the emtryonal development in the eye chambers. One is that the embryos would possess an ability to adapt themselves to the environment which provides unfavourable conditions. The other is that the embryos might remain for a certain duration in the eye chamber, which is filled with a new body fluid produced immediately after the loss of the aqueous humor and the fluid of which becomes similar to blood serum in component. The first assumption is highly reliable since the embryonal cells are mostly at the undifferentiated state and so they probably engage a simple metabolism during their early period. The second assumption is induced by the fact that the rabbit eye chamber produces a plasmoid humor which has mostly similar components to blood serum after loss of aqueous humor through cornea by puncturing. However, the plasmoid humor is substituted by the initial aqueous humor in eight hours. Even though this finding, production of the new fluid, could be applied to the rat eye, it is hardly reliabel that the plasmoid humor remains for such a long period as 120 hours. Consequently, the development of the embryos is more likely due to their adaptability to the new environment during their early developmental stages.

  • PDF

Presence of Intact Cumulus Cells during In Vitro Fertilization Inhibits Sperm Penetration but Improves Blastocyst Formation In Vitro (돼지 난자의 체외 수정에 있어서 난구 세포의 존재가 정자 침투율 및 배 발육에 미치는 영향)

  • Yong, H.Y.;Lee, E.
    • Journal of Embryo Transfer
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study was conducted to examine the role of intact cumulus cells during in vitro fertilization (IVF) on sperm penetration, male pronuclear (MPN) formation and subsequent embryo development of oocytes matured and fertilized in vitro. Cumulus-oocyte complexes obtained from the slaughtered gilt ovaries were matured for 44 h in TCM199 containing 10% porcine follicular fluid, epidermal growth factor and hormones. After maturation culture, denuded oocytes or oocytes with intact cumulus cells were coincubated with frozen-thawed boar semen for 8h in a modified tris-buffered medium containing 5mM caffeine and 10mM calcium chloride. Putative zygotes were fixed and examined for sperm penetration and MPN formation (Experiments $1{\sim}3$), or cultured in North Carolina State University-23 medium fo. 156 h (Experiment 3). In Experiment 1, sperm penetration was examined after insemination of denuded oocytes and oocytes with intact cumulus cells at the concentration of $7.5{\times}10^5$ sperm/ml. Optimal sperm concentration for IVF of cumulus-intact oocytes was determined in Experiment 2 by inseminating intact oocytes with $2{\sim}5{\times}10^6$ sperm/ml. In Experiment 3, denuded or intact oocytes were inseminated at the concentrations of $7.5{\times}10^5$ and $4.0{\times}10^6$ sperm/ml, respectively, and in vitro embryo development was compared. Sperm penetration was significantly (p<0.01) decreased in cumulus-intact oocytes compared to denuded oocytes (35.2% vs. 77.4%). Based on the rates of sperm penetration and normal fertilization, the concentration of $4.0{\times}10^6$ sperm/ml was optimal for the IVF of intact oocytes compared to other sperm concentrations. The presence of intact cumulus cells during IVF significantly (p<0.05) improved embryo cleavage (48.8% vs. 58.9%), blastocyst (BL) formation (11.0% vs. 22.8%) and embryo cell number $(22{\pm}2\;vs.\;29{\pm}2\;cells)$ compared to denuded oocytes. In conclusion, these results suggest that intact cumulus cells during IVF inhibit sperm penetration but improve embryo cleavage, BL formation and embryo cell number of porcine embryos produced in vitro.

Transfer, Cryopreservation and Production of Bovine Embryos Cultured in Serum-Free System (Serum-Free Medium에서 배양한 한우 배의 내동성과 이식)

  • Im, Y.-J.;Kim, J.-H.;Song, H.-B.;Jung, Y.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.133-145
    • /
    • 2004
  • Serum-contain is commoly used for the production of in vitro-derived bovine embryos. However, were biological activity of serum varies from lot to lot, time consuming to choose better serum with good quality and risks of virus, bacteria and mycoplasma infection. This study established serum-free culture systems of in vitro embryo development to efficiently obtain a large number of blastocysts from ovaries of Hanwoo and oocytes maturation, cell number, tlerance of cryopreservation. Secondly, serum-contain medium is suspected of contributing to the large calf size, dystocia, cersarean sections, calf mortality and confirmed these blastocysts are high quality in terms of cyotolerance, high rates of pregancy and normal birth. For these reasons, Culture media (IVMD101 and IVD101) designed specifically for the preimplantation bovine embryo are rather simplistic, being based on salt solutions with additional energy substrates and growth factors. An improved serum-free medium (IVMD101) was developed for bovine oocytes maturation in vitro. Proportions of embryos developing to the blastocyst stage cultured in both IVD101(32.4%) and IVD101(34.5%) serum-free media were higher than in TCM199+10% FBS(12.4%) serumcontaining medium. Futhermore, the cell numbers per blastosyst obtained in the serum-free media were superior to those of blastocysts developed in serum-supplemented medium. Also, cell numbers of blastocysts obtained in the serum-free media were similar with blastocysts derived in vivo. Survival rate blastocysts after 24 hr incubation after thawing, the blastocysts cultured in both IVD101(94.5%) and IVD101(95.8%) serum-free media were higher than in TCM199+10% FBS (52.5%) serum-containing medium. After 72 hr incubation after thawing, hatching rates of blastocysts developed in IVD101(78.4%) and IVMD101(83.7%) were sighnificantly higher than that developed in the serum-supplemented medium(32.0%). The pregnancy rates almost not different between fresh blastocysts(38.2%) and frozen blastocysts(34.9%). The results suggested that the improved serum-free media(IVMD101 and IVD101) offer several advantages over culture in serum-cotaining medium, including increased rates of blastocyst formation and high cel numbers. Additionally, the survival and hatching rates of embryos product in serum-free media after post-thaw culture were superior to those of embryos produced in the serum-containg medium and useful for the production of high quality bovine embryos for cryo-preservation. These improved serum-free media are beneficial not only for the study of the mechanisms of early embryogenesis but also for mass production of good quality embryos for embryo transfer, cloning and transgenesis.

Effects of Morphology, Reproductive Cycle, Incubation Time and Activation of Oocytes on Developmental Rate of Embryos Fertilized in vitro (난자의 형태, 번식주기, 배양시간 및 활성화 처리가 개 난자의 체외수정후 발생에 미치는 영향에 관한 연구)

  • 이동수;김상근
    • Journal of Embryo Transfer
    • /
    • v.18 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • The study was carried out to investigate the effects of morphology, reproductive cycle, incubation time and activation of oocytes in vitro maturation of canine oocytes and development of canine IVM/IVF embryos. The results were summarized as follows: 1. The developmental rates to 16 cells of fresh, salts and 4$^{\circ}C$-stored oocytes with and without cumulus cells were 14.3%, 5.0% and 7.5%, 2.8% and 5.7%, 0.0%, respectively. The rate of oocytes with cumulus cells(5.7%~14.3%) was higher than that of denuded oocytes(0.0%~5.0%). 2. The developmental rate to If cells of in vitro cultured oocytes recovered from ovaries collected at different stages of the reproductive cycle were 0.0%, 10.7%, 1.5%, respectively. 3. The developmental rate to 16 cells of fresh oocytes with cumulus cell cultured for 24, 32 and 48 hrs in $CO_2$ incubator were 0.0%, 5.3%, 11.8%, respectively. The rate of oocytes cultured for 48 hrs was higher than that oocytes cultured for 24 and 32 hrs. 4. The development to If cells treated activation and non-activation oocytes were 15.0%, 6.7%, respectively. The rate of oocytes treated activation was higher than that oocyte treat non-activation.

Effect of $Cd^{2+}$ on the Oocyte Maturation and Developmental Stages of Brown Frog Embryo, Rana dybowskii in vitro ($Cd^{2+}$이 북방산개구리의 난자성숙과 배아발달에 미치는 영향)

  • Ko Sun-Kun
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.3
    • /
    • pp.345-351
    • /
    • 2006
  • This study investigates the toxic effects of $Cd^{2+}$on frog (Rana dybowskii) by the determination of oocyte maturation and development of embryo exposure to different concentrations of the toxicant. The results show that $Cd^{2+}$ concentration of 0.1ppm suppressed the maturation of the oocytes. To examine the reversibility of the inhibitory effects, the oocytes were exposed to the $Cd^{2+}$ only for 3 hours, and then transferred to plain medium and cultured further for 17 hours. The oocytes were recovered from the toxic effect of the $Cd^{2+}$ when they were exposed to 1ppm, but not to 2.5ppm of the $Cd^{2+}$. The development of 2 cell embryos to 32 cell was completely suppressed at 0.1ppm and the longer the embryos were exposed to the $Cd^{2+}$, the more damage appeared to the embryos and the cytolysis of the 32 cell was induced by $Cd^{2+}$ at 0.1ppm. On the other hand, the embryos of blastula stage were cultured 96 hours in presence of the $Cd^{2+}$ at various concentrations and were examined. The rates of mortality and malformed larvae were investigated by probit analysis. From the results of LC$_{50}$ of 0.1ppm and EC$_{50}$ of 0.08ppm, Tl of 5.0 was derived, which indicates $Cd^{2+}$ is to be considered a teratogenic compound. Such specific malformations occurred in 14.3% as spine deformations at the 0.05ppm, in 75.0% as tail deformations at the 0.1ppm, in 66.7% as abdominal deformations at the 0.01ppm and in 26.0% as profound deformations at the 0.1ppm of $Cd^{2+}$ concentration which living embryos were exposed to. $Cd^{2+}$ suppressed growth to head-tail length at 0.1ppm. In conclusion, The study results reveal that $Cd^{2+}$ must be considered highly toxic effect to oocyte maturation and embryonic development.

Effect of Amino Acids Supplemented to Culture Medium on Development of Porcine Embryos Culturde in Vitro (아미노산의 첨가가 돼지 체외수정란의 후기배의 발달에 미치는 영향)

  • Kim Y. S.;Song S. H.;Cho S. K.;Kwack D. O.;Kim C. W.;Park C. S.;Chung K. H.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.3
    • /
    • pp.201-205
    • /
    • 2005
  • The objective of this study was to investigative the effects of amino acids supplementation on maturation, fertilization and embryo development of pig oocytes. Essential amino acids (EA), non-essential amino acids (NA) or both amino acids (EA + NA) were supple-mented to North Carolina State University (NCSU) 23 medium containing porcine follicular fluid (pFF). When the amino acids were supplemented to the maturation medium, the maturation rates were higher (p<0.05) in the NA group than control ($83.3{\pm}0.04\%\;versus\;70.0{\pm}0.05\%$, but the subsequent cleavage rates and development to morula and blstocyst stage between aminoacid supplement groups and control were not different. The developmental rates to morula and blastocysts stage were not significantly different regardless of amino acid supplementation to culture medium. In addition, supplementation of amino acids did not significantly affect the rate of fertilization and polyspermy. When the amino acids were supplement to culture medium, the number of trophectodermal (TE) cells was significantly (p<0.05) higher in amino acid supplement group than that of control ($18.6{\pm}0.5\;versus\;16.1{\pm}0.6$), whereas the numbers of inner cell mass (ICM) cells were not different among the treaonent groups and control ($29.0{\pm}0.9\~31.5{\pm}1.2$). Total cell number was also significantly (p<0.05) higher in EANA group ($50.0{\pm}1.0$) than that of control group ($44.2{\pm}1.1$). These results indicate that the amino acid supplementation to maturation and culture medium may not significantly stimulate early embryo development, but may improve the TE cell number of blastocyst stage in the pig.

Study on the Developmental Rate of In Vitro Cultured Cats Oocytes Recovered from Ovaries Collected at Different Stages of the Reproductive Cycle (번식주기의 단계별로 회수한 고양이 난자의 체외수정과 체외발생에 관한 연구)

  • 박상훈;이명헌;김무강;김상근
    • Journal of Embryo Transfer
    • /
    • v.18 no.2
    • /
    • pp.157-161
    • /
    • 2003
  • The study was carried out to investigate the effects of morphology, reproductive cycle, incubation time and activation of oocytes in vitro maturation of cats oocytes and development of IVM/IVF embryos. The results were summarized as follows : 1. The fertilization and developmental rate of fresh and salts-stored oocytes with and whithout cumulus cells were 65.7%, 17.1% and 28.6%, 8.6% and 57.1%, 13.3%, 23.3%, 3.3%, respectively. The rate of oocytes with cumulus cells(13.3%∼65.7%) was higher than that of denuded oocytes(3.3%∼28.6%). 2. The fertilization and developmental rate of oocytes recovered from ovaries collected at different stages of the reproductive cycle were 68.9%, 44.4%, 48.9% and 17.8%, 8.9%, 12.8%, respectively. 3. The fertilization and developmental rate of oocytes in vitro cultured at different time of incubation(24, 36 and 48 h) were 66.7%, 46.7%, 48.9% and 17.8%, 11.1%, 8.5%, respectively. respectively. The rate of oocytes incubated 24 h(66.7%) was higher than that oocytes incubated 36 and 48 h(46.7%∼48.9%). 4. The fertilization and developmental rate of oocytes treated activation and non-activation oocytes were 57.4%, 31.4% and 22.9%, 11.4%, respectively. The rate of oocytes treated activation was higher than that oocyte treat non-activation.