• Title/Summary/Keyword: Impurity optical absorption

Search Result 42, Processing Time 0.023 seconds

Optical energy gap properties of $Co^{2+}$ -doped $In_2S_3$ single crystal ($In_2S_3$ : $Co^{2+}$ 단결정의 광학적 에너지 갭 특성)

  • Kim, Hyung-Gon;Kim, Nam-Oh;Choi, Young-Il;Lee, Kyoung-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.42-46
    • /
    • 2000
  • ${\beta}{\cdot}In_2S_3$${\beta}{\cdot}In_2S_3:Co^{2+}$$In_2S_3$+S+ZnS를 출발물질로 하여 ($ZnCl_2+I_2$)를 수송매체로 사용한 chemical transport reaction method로 성장시켰다. 성장된 단결정은 tetragonal structure를 갖고 298K에서 indirect optical energy gap은 2.240eV, 1.814eV로 각각 주어졌고, direct optical energy gap은 2.639eV, 2.175eV로 각각 주어졌다. ${\beta}{\cdot}In_2S_3:Co^{2+}$ single crystal에서 impurity optical absorption peak가 나타났으며, 이들 peaks의 origin은 $Co^{2+}(Td)$ ion의 energy level 간의 electron transition임을 crystal field theory를 적용하여 규명하였다.

  • PDF

Optical Properties and Thermodynamic Function Properties of Undoped and Co-Doped $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ Single Crystals ($Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$$Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$:$Co^{2+}$ 단결정의 광학적 특성과 열역학 함수 추정)

  • Hyun, Seung-Cheol;Park, Hjung;Park, Kwang-Ho;Oh, Seok-Kyun;Kim, Hyung-Gon;Kim, Nam-Oh
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.275-281
    • /
    • 2003
  • $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ and $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$:$Co^{2+}$ single crystals were grown by CTR method. The grown single crystals have defect chalcopyrite structure with lattice constant a=5.5966$\AA$, c=10.8042$\AA$ for the pure, a=5.6543$\AA$, c=10.8205$\AA$ for the Co-doped single crystal, respectively. The optical energy band gap was given as indirect band gap. The optical energy band gap was decreased according to add of Co-impurity Temperature dependence of optical energy band gap was fitted well to the Varshni equation. From this relation, we can deduced the entropy, enthalpy and heat capacity. Also, we can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_{d}$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

Optical Properties of Undoped and Doped$Zn_4SnSe_6$Single Crystals ($Zn_4SnSe_6$$Zn_4SnSe_6:Co^{2+}$단결정의 광학적 특성연구)

  • 이기형;김덕태;박광호;현승철;김형곤;김남오
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Zn$_4$SnSe$_{6}$ and Zn$_4$SnSe$_{6}$ :Co$^{2+}$ single crystals were by the chemical transport reaction method. They crystallized in the monoclinic structure. The direct energy band gaps of the Zn$_4$SnSe$_{6}$ and Zn$_4$SnSe$_{6}$ :Co$^{2+}$single crystals at 289k were found to be 2.146eV and 2.042eV. Optical absorption due to impurity in the Zn$_4$SnSe$_{6}$ :Co$^{2+}$single crystal was observed and described as originating from the electron transition between energy levels of Co$^{2+}$ion sited at T$_{d}$ symmetry point.y point.

OPTICAL PROPERTIES OF GaSe SINGSE CRYESTALS by BRIDGMAN TECHNIQUE (Bridgman 방법 의해서 성장된 GaSe 단결정의 광학적인 특성)

  • Lee, Woo-Sun;Chung, Yong-Ho;Kim, Nam-Oh;Kim, Hyung-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.239-241
    • /
    • 1996
  • The energy gap of GaSe:$Er^{3+}$(5mol%) single crystals grown by the Bridgman technique displaced a direct energy gap at 1.79 eV and an indirect energy gap at 1.62 eV at $300^{\circ}K$ with the addition of Erbium. Also, an impurity optical absorption peak was found to have occurred at $6505\;cm^{-1}$. The peak identified the origin of the electronic transitions between the energy levels of $Er^{3+}$ ions when the addition of dopant.

  • PDF

Indium doped ZnO:Al thin films prepared by pulsed laser deposition for transparent conductive oxide electrode applications (펄스 레이저 방법으로 증착된 투명 산화물 전극용 인듐이 도핑된 ZnO:Al 박막)

  • Xian, Cheng-Ji;Lee, Chang-Hyun;Lee, Ye-Na;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.27-27
    • /
    • 2008
  • The different concentration Indium doped ZnO:Al films were grown on glass substrates (Corning 1737) at $200^{\circ}C$ by pulsed laser deposition. The indium doping in AZO films shows the critical effect on the crystallinity, resistivity, and optical properties of the films. The AZO films doped with 0.3 atom % indium content exhibit the highest crystallinity, the lowest resistivity of $4.5\times10^{-4}\Omega$-cm, and the maximum transmittance of 93%. The resistivity of the indium doped-AZO films is strongly related with the crystallinity of the films. The carrier concentration in the indium doped-AZO films linearly increases with increasing indium concentration. The mobility of the AZO films with increasing indium concentration was reduced with an increase in carrier concentration and the decrease in mobility was attributed to the ionized impurity scattering mechanism. In an optical transmittance, the shift of the optical absorption edge to shorter wavelength strongly depends on the electronic carrier concentration in the films.

  • PDF

Crystal Growth of Cd4GeS6 and Cd4GeS6:Co2+Single Crystals ($Cd_{4}GeS_{6}$$Cd_{4}GeS_{6}:Co^{2+}$ 단결정의 성장)

  • Kim, D.T.;Kim, H.G.;Kim, N.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11b
    • /
    • pp.1-6
    • /
    • 2004
  • In this paper author describe the undoped and $Co^{2+}$ (0.5mole%)doped $Cd_4GeS_6$ single crystals were grown by the chemical transporting reaction(CTR) method using high purity(6N) Cd, $GeS_2$, S elements. It was found from the analysis of X-ray diffraction that the undoped and $Co^{2+}$(0.5mole%) doped $Cd_{4}GeS_{6}$ compounds have a monoclinic structure in space grop Cc. The optical energy band gap was direct band gap and temperature dependence of optical energy gap was fitted well to Varshni equation. Impurity optical absorption peaks due to the doped cobalt in the $Cd_4GeS_6:Co^{2+}$ single crystal were observed at 3593cm-1, 5048cm-1, 5901cm-1, 7322cm-1, 12834cm-1, 13250cm-1, 14250cm-1,and 14975cm-1 at 11.3K.

  • PDF

Structural and optical properties of $TiO_2$ thin film fabricated by reactive sputtering (반응성 스퍼터링법에 의한 $TiO_2$ 박막의 구조적 및 광학적 특성)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.58-61
    • /
    • 2008
  • $TiO_2$ is a wide band-gap semiconductor (3.4 eV) and can only absorb about 5% of sun light in the ultraviolet light region, which largely limits its practical applications because of the lower utility of sun light and quantum yield. In order to move the absorption edge of $TiO_2$ fims to visible spectrum range, we have made the impurity level within a band-gap of $TiO_2$ thin film by introduction of oxygen vacancy. Oxygen-defected $TiO_2$ thin film have prepared by reactive sputtering with the partial pressure of $Ar:O_2=10:90{\sim}99.33:0.66$ ratio. As a result, we could have the impurity level of about 2.75 eV on condition that oxygen partial pressure is below 7%.

  • PDF

Structural and optical properties of $TiO_2$ thin film fabricated by reactive sputtering (반응성 스퍼터링법에 의한 $TiO_2$ 박막의 구조적 및 광학적 특성)

  • Jeong, Woon-Jo;Yang, Hyeon-Hun;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.393-394
    • /
    • 2008
  • $TiO_2$ is a wide band-gap semiconductor (3.4 eV) and can only absorb about 5% of sun light in the ultraviolet light region, which largely limits its practical applications because of the lower utility of sun light and quantum yield. In order to move the absorption edge of $TiO_2$ films to visible spectrum range, we have made the impurity level within a band-gap of $TiO_2$ thin film by introduction of oxygen vacancy. Oxygen-defected $TiO_2$ thin film have prepared by reactive sputtering with the partial pressure of Ar:$O_2$=10:90~99.33:0.66 ratio. As a result, we could have the impurity level of about 2.75 eV on condition that oxygen partial pressure is below 7%.

  • PDF

Structural and optical properties of $TiO_2$ thin film fabricated by reactive sputtering (반응성 스퍼터링법으로 제조된 $TiO_2$ 박막의 구조적 및 광학적 특성)

  • Jeong, Woon-Jo;Yang, Sung-Eun;Yang, Hyeon-Hun;Kim, Young-Jun;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.398-399
    • /
    • 2006
  • $TiO_2$ is a wide band-gap semiconductor (3.4 eV) and can only absorb about 5% of sun light. in the ultraviolet light region, which largely limits its practical applications because of the lower utility of sun light and quantum yield. In order to move the absorption edge of $TiO_2$ films to visible spectrum range, we have made the impurity level within a band-gap of $TiO_2$ thin film by introduction of oxygen vacancy. Oxygen-defected $TiO_2$ thin film have prepared by reactive sputtering with the partial pressure of Ar:$O_2$=10:90~99.33:0.66 ratio. As a result, we could have the impurity level of about 2.75 eV on condition that oxygen partial pressure is below 7%.

  • PDF

Optical and Magnetic Properties of Copper Doped Zinc Oxide Nanofilms

  • Zhao, Shifeng;Bai, Yulong;Chen, Jieyu;Bai, Alima;Gao, Wei
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.68-71
    • /
    • 2014
  • Copper doped Zinc Oxide nanofilms were prepared using a simple and low cost wet chemical method. The microstructures, phase structure, Raman shift and optical absorption spectrum as well as magnetization were investigated for the nanofilms. Room temperature ferromagnetism has been observed for the nanofilms. Structural analyses indicated that the films possess wurtzite structure and there are no segregated clusters of impurity phase appreciating. The results show that the ferromagnetism in Copper doped Zinc Oxide nanofilms is driven either by a carrier or defect-mediated mechanism. The present work provides an evidence for the origin of ferromagnetism on Copper doped Zinc Oxide nanofilms.