• Title/Summary/Keyword: Impurity effect

Search Result 266, Processing Time 0.023 seconds

The Effects of Impurity Composition and Concentration in Reactor Structure Material on Neutron Activation Inventory in Pressurized Water Reactor (경수로 구조재 내 불순물 조성 및 함량이 중성자 방사화 핵종 재고량에 미치는 영향 분석)

  • Cha, Gil Yong;Kim, Soon Young;Lee, Jae Min;Kim, Yong Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.91-100
    • /
    • 2016
  • The neutron activation inventories in reactor vessel and its internals, and bio-shield of a PWR nuclear power plant were calculated to evaluate the effect of impurity elements contained in the structural materials on the activation inventory. Carbon steel is, in this work, used as the reactor vessel material, stainless steel as the reactor vessel internals, and ordinary concrete as the bio-shield. For stainless steel and carbon steel, one kind of impurity concentration was employed, and for ordinary concrete five kinds were employed in this study using MCNP5 and FISPACT for the calculation of neutron flux and activation inventory, respectively. As the results, specific activities for the cases with impurity elements were calculated to be more than twice than those for the cases without impurity elements in stainless and carbon steel. Especially, the specific activity for the concrete material with impurity elements was calculated to be 30 times higher than that without impurity. Neutron induced reactions and activation inventories in each material were also investigated, and it is noted that major radioactive nuclide in steel material is Co-60 from cobalt impurity element, and, in concrete material, Co-60 and Eu-152 from cobalt and europium impurity elements, respectively. The results of this study can be used for nuclear decommissioning plan during activation inventory assessment and regulation, and it is expected to be used as a reference in the design phase of nuclear power plant, considering the decommissioning of nuclear power plants or nuclear facilities.

Analysis and Reduction of Impurity Contamination Induced by Plasma Etching on Si Surface (플라즈마 식각에 의하여 실리콘 표면에 유기된 불순물 오염의 분석 및 제거)

  • Cho, Sun-Hee;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1078-1084
    • /
    • 2006
  • Impurity contamination induced by $CF_4\;and\;HBr/Cl_2/O_2$ plasma etching on Si surface was examined by using surface spectroscopes. XPS(x-ray photoelectron spectroscopy) surface analysis showed that F of 0.4 at % exists in the surface layer in the form of Si-F bonding but Br and Cl are below the detection limit $(0.1{\sim}1.0%)$ of the spectroscope. Static-SIMS(secondary ion mass spectrometry) surface analysis showed that the etched Si surface was contaminated with etching gas elements such as H, F, Cl and Br, and they existed to the depth of about $20{\sim}40nm$. The etched Si surface was treated with three different methods that were HF dip, thermal oxidation followed by HF dip and oxygen-plasma oxidation followed by HF dip. They showed an effect in reducing the impurity contamination and the oxygen-plasma oxidation followed by HF dipping method appears to be a little bit more effective.

Effects of Metal Impurtities in Insulation of Distribution Cables on Electrical Conduction of Distribution Cables (배전 케이블의 절연체내 불순물이 전기전도도에 미치는 영향)

  • 이우선;김남오;정용호;최재곤;김형곤;김상준
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.447-452
    • /
    • 1997
  • Effects of metal impurities in insulation of distribution cables on electrical conduction of distribution cables was investigated. Samples of Al, Cu, Fe are fabricated as metallic impurities, and measured electrical conductivity in the voltage range of 0~10 KV. Temperature dependent effect of hysteresis curves and the relationship between forward and reverse current due to impurity content are discussed.

  • PDF

An Approach to Develop New Ternary Oxide Phosphors;Reduction of Defects by Impurity Addition

  • Yamamoto, Hajime;Okamoto, Shinji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.239-242
    • /
    • 2002
  • Luminescence efficiency of phosphors, $SrTiO_3;Pr^{3+}$ and $SrIn_2O_4:Pr^{3+}$, is increased remarkably by III-group impurities. This effect is explained by a picture that carriers thermally released from impurity-induced traps supply energy to $Pr^{3+}$ ions. The impurities also improve carrier transport efficiency by reducing lattice defects. This picture indicates a possibility to develop new ternary oxide phosphors.

  • PDF

Origin of Charge Puddle of Graphene on α - SiO2: First Principles Study.

  • Shim, Yoon Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.338-342
    • /
    • 2015
  • Ripples and charge impurity effect of graphene are considered as the origin of charge puddles in graphene sheet on SiO2. However, this topic is very controversial among researchers in graphene community. In this study, by using density functional theory, we calculate the band structure of the rippled graphene model and charged impurity model that is located close to the (0001) ${\alpha}$-quartz surface. We expect that this study will provide great insight on this matter.

  • PDF

Effect of Impurity Addition on the Microwave Dielectric Properties of $(Ba_{0.93}Sr_{0.07}O)-0.5Sm_2O_3-4.5TiO_2$ Ceramics ($(Ba_{0.93}Sr_{0.07}O)-0.5Sm_2O_3-4.5TiO_2$계 세라믹스의 불순물 첨가에 따른 마이크로파 유전특성)

  • Kim, Tae-Joong;Jang, Jae-Hoon;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1148-1151
    • /
    • 2002
  • Dielectric ceramics with nominal composition of $(Ba_{0.93}Sr_{0.07}O)-0.5Sm_2O_3-4.5TiO_2$ was prepared using the conventional mixed oxide process-derived powder. Effect of $SiO_2$, $MnO_2$ and $Al_2O_3$ impurity addition on the microwave properties was examined in some detail. Measured relative permittivity $(\varepsilon_r)$ values were in the range of 53 to 59 and showed little dependence on impurity addition. In contrast, quality factor $(Q{\cdot}f)$ and temperature coefficient of resonant frequency $(\tau_f)$ values were greatly influenced by the type and the amount of impurities. It was found that 0.1~0.2wt% addition of $Al_2O_3$ was most effective for improving the properties, where ${\varepsilon}_r$, $Q{\cdot}f$ and $\tau_f$ values were 57.7, 10000, and +7ppm/$^{\circ}C$, respectively.

  • PDF

The performance of PEMFC during exposure to simultaneous sulfur impurity poisoning on cathode and anode (공기극과 연료극의 복합 황불순물에 의한 고분자 전해질막 연료전지의 성능에 미치는 영향)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.594-598
    • /
    • 2012
  • Polymer electrolyte membrane fuel cell(PEMFC) performance degrades seriously when sulfur dioxide and hydrogen sulfide are contaminated in the fuel gas at anode and air source at cathode, respectively. This paper reveals the effect of the combined sulfur impurity poisoning on both PEMFC cathode and anode parts through measuring electrical performance on single FC operated under 1 ppm to 10 ppm impurity gases. The severity of $SO_2$ and $H_2S$ poisoning depended on concentrations of impurity gases under optimum operating conditions($65^{\circ}C$ of cell temperature and 100 % relative humidity). Sulfur adsorption occured on the surface of Pt catalyst layer on MEA. In addition, MEA poisoning by impurity gases were cumulative. After four consecutive poisonings with 1, 3, 5 to 10 ppm, the fuel cell performance of PEMFC was decrease upto 0.54 V(76 %) from 0.71 V.

Trace impurity analysis of Cu films using GDMS: concentration change of impurities by applying negative substrate bias voltage (글로우방전 질량분석법을 이용한 구리 박막내의 미량불순물 분석: 음의 기판 바이어스에 의한 불순물원소의 농도변화)

  • Lim Jae-Won;Isshiki Minoru
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Glow discharge mass spectrometry(GDMS) was used to determine the impurity concentrations of the deposited Cu films and the 6N Cu target. Cu films were deposited on Si (100) substrates at zero substrate bias voltage and a substrate bias voltage of -50 V using a non-mass separated ion beam deposition method. Since do GDMS has a little difficulty to apply to thin films because of the accompanying non-conducting substrate, we have used an aluminum foil to cover the edge of the Cu film in order to make an electrical contact of the Cu film deposited on the non-conducting substrate. As a result, the Cu film deposited at the substrate bias voltage of -50 V showed lower impurity contents than the Cu film deposited without the substrate bias voltage although both the Cu films were contaminated during the deposition. It was found that the concentration change of each impurity in the Cu films by applying the negative substrate bias voltage is related to the difference in their ionization potentials. The purification effect by applying the negative substrate bias voltage might result from the following reasons: 1) Penning ionization and an ionization mechanism proposed in the present study, 2) difference in the kinetic energy of accelerated Cu+ ions toward the substrate with/without the negative substrate bias voltage.

Build-up Phenomenon and Self-Cleaning Effect upon Wire Electrode Surface of an Electrolytic Ozone Generator in Tap Water (수 분해형 오존발생장치의 전극선 비대현상과 자기회복 현상)

  • Moon, Jae-Duk;Kim, Yong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.6
    • /
    • pp.626-629
    • /
    • 1991
  • The negative wire of an electrolytic ozone generator, proposed by authors, has been contaminated by attaching the impurity particulate in tap water, which is called BUILD-UP phenomenon. The higher applied voltage and the larger wire diameter have shown the higher build-up rate, which makes the current reducing largely and concurrently the ozone production smaller. It is found that the positive electrode of the ozone generator has a strong SELF-CLEANING effect by detaching the impurity particulate from its surface, which, however, is used us a novel means of solving the build-up problem. As a result, the build-up problem can be solved effectively by applying an alternate square wave pulse voltage to the electrodes so as to get the self-cleaning ability on the both electrodes during each of the half pulse duration time.

  • PDF

Development of the RE indirect-heating LPE furnace and the effect of impurity in YIG film on the MSSW properties

  • Fujino, M.;Fujii, T.;Sakabe, Y.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.288-291
    • /
    • 2002
  • We developed a new RF indirect-heating LPE furnace. The thermal gradient of our newly developed furnace is less than that of direct heating, and is as gentle as that of the resistance-heating LPE furnace. With this new furnace, the heating and/or cooling is faster than that of the resistance-heating furnace. Impurity-doped YIG film was grown from a $PbO-B_{2}O_{3}$, based flux on a (111) GGG substrate. To study the effect of the impurities on the MSSW threshold power and the saturation response time, we used two microstrip lines to excite and propagate the MSSW at 1.9 GHz. The MSSW threshold power and saturation response time was found to be related to the $\Delta$H.