Browse > Article

Trace impurity analysis of Cu films using GDMS: concentration change of impurities by applying negative substrate bias voltage  

Lim Jae-Won (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University)
Isshiki Minoru (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University)
Publication Information
Journal of the Korean Vacuum Society / v.14, no.1, 2005 , pp. 17-23 More about this Journal
Abstract
Glow discharge mass spectrometry(GDMS) was used to determine the impurity concentrations of the deposited Cu films and the 6N Cu target. Cu films were deposited on Si (100) substrates at zero substrate bias voltage and a substrate bias voltage of -50 V using a non-mass separated ion beam deposition method. Since do GDMS has a little difficulty to apply to thin films because of the accompanying non-conducting substrate, we have used an aluminum foil to cover the edge of the Cu film in order to make an electrical contact of the Cu film deposited on the non-conducting substrate. As a result, the Cu film deposited at the substrate bias voltage of -50 V showed lower impurity contents than the Cu film deposited without the substrate bias voltage although both the Cu films were contaminated during the deposition. It was found that the concentration change of each impurity in the Cu films by applying the negative substrate bias voltage is related to the difference in their ionization potentials. The purification effect by applying the negative substrate bias voltage might result from the following reasons: 1) Penning ionization and an ionization mechanism proposed in the present study, 2) difference in the kinetic energy of accelerated Cu+ ions toward the substrate with/without the negative substrate bias voltage.
Keywords
ion beam; copper; impurity; substrate bias voltage; glow discharge mass spectrometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. O'Reilly, X. Jiang, J. T. Beechinor, S. Lynch, C. Ni Dheasuna, J. C. Patterson, and G. M. Grean, Appl. Surf. Sci. 91, 152 (1995)   DOI   ScienceOn
2 R. K. Marcus, J. Anal. At. Spectrom. 8, 935 (1993)   DOI   ScienceOn
3 C. Lazik and R. K. Marcus, Spectrochimica Acta. 48B, 1673 (1993)
4 W. Vieth and J. C. Huneke, Spcetrochimica Acta. 46B, 137 (1991)
5 C. A. Chang and C. K. Hu, Appl. Phys. Lett. 57, 617 (1990)   DOI
6 J. W. Coburn and E. Kay, Appl. Phys. Lett. 18, 435 (1971)   DOI
7 D. M. Wayne, R. K. Schulze, C. Maggiore, D. W. Cooke, and G. Havrilla, Appl. Spectrosc. 53, 266 (1999)   DOI   ScienceOn
8 T. E. Gibeau and R. K. Marcus, J. Anal. At. Spectrum. 13, 1303 (1998)   DOI   ScienceOn
9 P. Gregory, A. J. Bangay, and T. L. Bird, Metallurgia 71, 207 (1965)
10 M. Van Straaten, K. Swenters, R. Gijbels, J. Verlinden, and E. Adriaenssens, J. Anal. At. Spectrom. 9, 1389 (1994)   DOI   ScienceOn
11 W. Schelles and R. V. Grieken, J. Anal. At. Spectorm. 12, 49 (1997)   DOI   ScienceOn
12 임재원, Minoru Isshiki, 한국진공학회지 12, 136 (2003)
13 E. E. Muschlitz, Science 159, 599 (1968)   DOI   ScienceOn
14 D. R. Lide, Handbook of Chemistry and Physics (New York CRC press) pp. 10-207
15 T. Takagi, Thin Solid Films 92, 1 (1982)   DOI   ScienceOn
16 임재원, 배준우, Minoru Isshiki, 한국진공학회지 12, 174 (2003)
17 J. S. Becker and H. -J. Dietze, Spectrochim. Acta B 53, 1475 (1998)   DOI   ScienceOn