• Title/Summary/Keyword: Impurity Fe

Search Result 114, Processing Time 0.026 seconds

A First-principles Study on Magnetic and Electronic Properties of Ni Impurity in bcc Fe

  • Rahman, Gul;Kim, In-Gee
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.124-127
    • /
    • 2008
  • The magnetic and electronic properties of Ni impurity in bcc Fe ($Ni_1Fe_{26}$) are investigated using the full potential linearized augmented plane wave (FLAPW) method based the generalized gradient approximation (GGA). We found that the Ni impurity in bcc Fe increases both the lattice constant and the magnetic moment of bcc Fe. The calculated equilibrium lattice constant of $Ni_1Fe_{26}$ in the ferromagnetic state was 2.84 A, which is slightly larger than that of bcc Fe (2.83 ${\AA}$). The averaged magnetic moment per atom of $Ni_1Fe_{26}$ unit cell was calculated to be $2.24{\mu}_B$, which is greater than that of bcc Fe (2.17 ${\mu}_B$). The enhancement of magnetic moment of $Ni_1Fe_{26}$ is mainly contributed by the nearest neighbor Fe atom of Ni, i.e., Fe1, and this can be explained by the spin flip of Fe1 d states. The density of states shows that Ni impurity forms a virtual bound state (VBS), which is contributed by Ni $e_{g{\downarrow}}$ states. We suggest that the VBS caused by the Ni impurity is responsible for the spin flip of Fe1 d states.

Effects of Titanium Impurity on the Crystallographic and Spin-rotation Transitions of FeS

  • Nam, Hyo-Duk;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.23-26
    • /
    • 2011
  • The effects of titanium ions on the crystallographic and spin-rotation transitions in iron sulfide have been examined by M$\"{o}$ssbauer spectroscopy in the temperature range of 78 to 600 K. It is noted that the titanium impurity of $Ti_{0.02}Fe_{0.98}S$ affects both the crystallographic and spin-rotation transitions of the iron sulfide. 2% impurity of $Ti^{2+}$ in FeS causes the increase in the difference between the spin rotation and ${\alpha}$ transition temperature by as much as 10 K compared with that for FeS. Both 1c and 2c structures coexist in the range between the ${\alpha}$ transition temperature and approximately 26 K, with a smaller hyperfine field corresponding to the 1c structure. The spin-rotation temperature for $Ti_{0.02}Fe_{0.98}S$ was measured to be 365 K, which is 10 K lower than the ${\alpha}$ transition temperature. By the 2% impurity of $Ti^{2+}$ in FeS the N$\'{e}$el temperature appreciably is not affected.

Effects of Al Impurity on Magnetism in bcc Fe by a First-principles Calculation

  • Seo, Seung-Woo;Rahman, Gul;Kim, In-Gee
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2009.12a
    • /
    • pp.72-73
    • /
    • 2009
  • First-principles calculations were carried out to investigate the effects of Al impurities on bcc Fe magnetism by considering SOC. No significant solid solution hardening effect was found. Albeit the effects of the SOC by Al on spin magnetic moments were minor, there are sizeable orbital magnetic effects. It is concluded that the orbital magnetism due to the Al impurity is strongly related with the impurity screening of the system as seen in Si impurity case [3], but the effects of Al impurity is stronger than those of Si impurity in terms of orbital magnetism.

  • PDF

Effects of Composition and Temperature on the Descaling Characteristics in Si Containing Steel (Si 첨가강의 Descaling 특성에 미치는 강조성 및 가열온도의 영향)

  • Choi J. W.;Kwon S. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.277-284
    • /
    • 2004
  • Low carbon steels containing Si of up to $1.2\;wt\%$ were oxidized in air at 1373 K and 1523 K, i.e. below and above the eutectic temperature of FeO and $Fe_2SiO_4$. The influence of a impurity element, S on behavior of scale formation during oxidation was investigated by using $M\"{o}chssbauer$ spectroscopy and EDS. This allowed establishment of an interface oxidation model of Si-added steel depending on temperature and an impurity element. A compound of FeO and FeS was formed in the scale/matrix interface of low carbon steels containing S of up to $0.03\;wt\%$ oxidized above 1213 K of the eutectic temperature. This was flat formed between $Fe_2SiO_4$ nodules along the scale/matrix interface without selective oxidation. It is due to low viscosity and high wettability of the compound of FeO and FeS in liquid. Conventional metallographic examinations revealed that roughness of the scale/matrix interface in Si-added steels became flat as the content of S increased. It was independent of oxidizing temperature and Si content. Effects of oxidizing temperature and an impurity element content on descaling characteristics in Si-added steels were evaluated by using a hydraulic descaling simulator. Good descaling characteristics was attributable to this flatness of the scale/matrix interface.

  • PDF

A Study of the Effects of Small Amount of Eu Impurities in α-Fe2O3 (α-Fe2O3 에 첨가한 미소량 EU 불순물의 효과에 대한 연구)

  • 오창헌
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.532-537
    • /
    • 2003
  • Crystallographic, electric, magnetic and heat transition properties of $\alpha$-Fe$_2$O$_3$ have been studied with a small addition of Eu impurities. Hematite($\alpha$-Fe$_2$O$_3$) is a basic ferromagnetic material having rhombohedral structure, which is similar to perovskites structure. Eu is a rare earth element that has an electric configuration of 4f$^{7}$ 6s$^2$. X-ray diffraction pattern of Fe$_{1-x}$ Eu$_{x}$O$_3$ (x = 0.00, 0.04, 0.06) shows an increament of a value when the amount of Eu impurities increased. The VSM data show an increment of magnetization by increasing the amount of Eu impurity. The one with x=0.06 shows the largest increment of magnetic remanence. The magnetic remanence varied from 0.49$\times$10$^{-3}$ emu/g to 0.62$\times$10$^{-3}$ emu/g when Eu impurity is increased by 2 %. Coercivity is decreased as Eu impurity is increased. Resistances is reduced significantly by Eu impurity. There is a clear difference in temperature-dependent resistance depending on the amount of Eu impurities. Especially, there are cusps between 150 K to 175 K. It indicates the change of electronic quantum states inside the atoms by rare earth impurities in rhombohedral structure. Temperature-dependent heat capacity shows that the most effective amount of Eu impurities is 6 %. %.

Impurity Property of Semiconductive Shield Materials in Power Cables (전력케이블용 반도전 재료의 불순물 함량)

  • Yang, Hoon;Bang, Jeong-Hwan;Nah, Chang-Woon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.195-196
    • /
    • 2007
  • In this paper, we investigated impurity content of carbon nanotube reinforced semiconductive shield materials and conventional semiconductive shield materials in power cables. To reduce impurity content, we used solution compounding method that an adding process of extra additives neglected. Impurity content measured through ICP-AES(Inductively Coupled Plasma Atomic Emission Spectroscopy). Also, impurity measured Ca, Cu, Fe, Al, Mg, Na, K, Si in eight. As a result, carbon nanotube reinforced semiconductive shield materials is lower than conventional semiconductive shield materials in impurity content by ICP-AES.

  • PDF

A First-principles Study on Magnetism of Al Impurity in bcc Fe

  • Rahman, Gul;Kim, In-Gee
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • The magnetism and electronic structure of bcc $Al_1Fe_{26}$ was investigated by means of first-principles calculations with and without spin-orbit coupling (SOC). From the calculated total energy, the SOC corrected system is shown to be approximately 5 meV per atom lower than the SOC uncorrected system. The induced spin magnetic moment at the Al site was -0.125 ${\mu}_B$ without SOC and -0.124 ${\mu}_B$ with SOC. The orbital magnetic moments were calculated to be 0.002 ${\mu}_B$ in [$\overline{1}$00] direction for Al. The electronic structures showed the nearest neighbor antiferromagnetic interaction between Fe and Al to be essential for determining the magnetism of the $Al_1Fe_{26}$ system.

A First-principles Study on the Effects on Magnetism of Si Impurity in BCC Fe by Considering Spin-orbit Coupling (스핀-궤도 상호작용을 고려한 Si 불순물이 BCC Fe의 자성에 미치는 영향에 대한 제일원리연구)

  • Rahman, Gul;Kim, In-Gee;Chang, Sam-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.211-216
    • /
    • 2008
  • The effects of Si impurity on electronic structures and magnetism of bcc Fe are investigated by using a first-principles method by considering spin-orbit coupling. In order to describe the Si impurity, a 27 atomic bcc Fe supercell has been considered. The Kohn-Sham equation was solved in terms of the all-electron full-potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). The effects of spin-orbit coupling were calculated self-consistently by considering spin-diagonal terms based on second variation method. For the ferromagnetic (FM) state without considering SOC, the spin magnetic moment of the Si impurity was calculated to be $-0.143{\mu}B$, while the magnetic moments of Fe atoms were calculated to be $2.214{\mu}B$, $2.327{\mu}B$, and $2.354{\mu}B$ in away from the Si atom, respectively. However, the FM state with considering SOC, the spin magnetic moment of the Si impurity was calculated to be $-0.144{\mu}B$, which is not affected significantly by SOC, but the spin magnetic moments of Fe atoms were calculated $2.189{\mu}B$, $2.310{\mu}B$, and $2.325{\mu}B$, respectively, which are much reduced value compared to those of the FM state without SOC. Comparing the total charge density and spin density, those features are thought to be originated by the screening distortions of the Fe $t_{2g}$ orbital, which can be obtained by considering SOC.

Energy Level Calculation of Fe3+ Paramagnetic Impurity Ion in a LiTaO3 Single Crystal (LiTaO3 단결정 내의 Fe3+ 상자성 불순물 이온에 대한 에너지 준위 계산)

  • Yeom, Tae Ho;Yoon, Dal Hoo;Lee, Soo Hyung
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.71-75
    • /
    • 2014
  • Ground state energy levels of the $Fe^{3+}$ paramagnetic impurity ion in stoichiometric $LiTaO_3$ and in congruent $LiTaO_3$ single crystals were calculated with electron paramagnetic resonance constants. Energy levels between six energy levels were obtained with spectroscopic splitting parameter g and zero field splitting constant D for $Fe^{3+}$ ion. The energy diagrams of $Fe^{3+}$ ion were different from different magnetic field directions ([100], [001], [111]) when magnetic field increases. The calculated ZFS energies of $Fe^{3+}$ ion in stoichiometric and congruent $LiTaO_3$ single crystals for ${\mid}{\pm}5/2$ > ${\leftrightarrow}{\mid}{\pm}3/2$ > and ${\mid}{\pm}3/2$ > ${\leftrightarrow}{\mid}{\pm}1/2$ > transitions were 12.300 GHz and 6.150 GHz, and 59.358 GHz and 29.679 GHz, respectively. It turns out that energy levels of $Fe^{3+}$ paramagnetic impurity in $LiTaO_3$ crystal are different from different crystal growing condition.