• Title/Summary/Keyword: Impurities

Search Result 1,327, Processing Time 0.028 seconds

A REVIEW ON THE ODSCC OF STEAM GENERATOR TUBES IN KOREAN NPPS

  • Chung, Hansub;Kim, Hong-Deok;Oh, Seungjin;Boo, Myung Hwan;Na, Kyung-Hwan;Yun, Eunsup;Kang, Yong-Seok;Kim, Wang-Bae;Lee, Jae Gon;Kim, Dong-Jin;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.513-522
    • /
    • 2013
  • The ODSCC detected in the TSP position of Ulchin 3&4 SGs are typical ODSCC of Alloy 600MA tubes. The causative chemical environment is formed by concentration of impurities inside the occluded region formed by the tube surface, egg crate strips, and sludge deposit there. Most cracks are detected at or near the line contacts between the tube surface and the egg crate strips. The region of dense crack population, as defined as between $4^{th}$ and $9^{th}$ TSPs, and near the center of hot leg hemisphere plane, coincided well with the region of preferential sludge deposition as defined by thermal hydraulics calculation using SGAP computer code. The cracks developed homogeneously in a wide range of SGs, so that the number of cracks detected each outage increased very rapidly since the first detection in the $8^{th}$ refueling outage. The root cause assessment focused on investigation of the difference in microstructure and manufacturing residual stress in order to reveal the cause of different susceptibilities to ODSCC among identical six units. The manufacturing residual stress as measured by XRD on OD surface and by split tube method indicated that the high residual stress of Alloy 600MA tube played a critical role in developing ODSCC. The level of residual stress showed substantial variations among the six units depending on details of straightening and OD grinding processes. Youngwang 3&4 tubes are less susceptible to ODSCC than U3 and U4 tubes because semi-continuous coarse chromium carbides are formed along the grain boundary of Y3&4 tubes, while there are finer less continuous chromium carbides in U3 and U4. The different carbide morphology is caused by the difference in cooling rate after mill anneal. There is a possibility that high chromium content in the Y3&4 tubes, still within the allowable range of Alloy 600, has made some contribution to the improved resistance to ODSCC. It is anticipated that ODSCC in Y5&6 SGs will be retarded more considerably than U3 SGs since the manufacturing residual stress in Y5&6 tubes is substantially lower than in U3 tubes, while the microstructure is similar with each other.

A Study on the Characteristics of CdS Thin Film by Annealing Time Change (열처리시간 변화에 의한 CdS 박막 특성에 관한연구)

  • Chung, Jae-Pil;Park, Jung-cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.438-443
    • /
    • 2021
  • This paper uses a multiplex deposition sputter system and aims to improve transmittance and reduce production costs by depositing a CdS thin film on an ITO glass substrate. When manufacturing CdS thin films, we wanted to find excellent conditions when manufacturing solar cells by changing heat treatment time. It was observed that thickness and sheet resistance were not significantly different depending on heat treatment time changes. The specific resistance was measured from a minimum of 6.68 to a maximum of 6.98. When the heat treatment time was more than 20 minutes, the transmittance was measured to be more than 75%. When the heat treatment time was 10 minutes, the bandgap was 3.665 eV and more than 20 minutes was 3.713 eV, which was measured as the same result. The XRD analysis showed that the structure of CdS was hexagonal and only CdS thin films were deposited without any other impurities. The result of calculating the FWHM was a maximum of 0.142 when the heat treatment time was 20 minutes, and a minimum of 0.133 when the heat treatment time was 40 minutes, so there was no significant difference in the FWHM when the heat treatment time was changed. The particle size was measured at 11.65 Å when the heat treatment time was 40 minutes, and at 10.93 Å when the heat treatment time was 20 minutes.

A Study to Recover Si from End-of-Life Solar Cells using Ultrasonic Cleaning Method (초음파 세척법을 이용한 사용 후 태양광 셀로부터 Si 회수 연구)

  • Lee, Dong-Hun;Go, Min-Seok;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.38-48
    • /
    • 2021
  • In this study, we determine the optimal process conditions for selectively recovering Si from a solar cell surface by removal of impurities (Al, Zn, Ag, etc.). To selectively recover Si from solar cells, leaching is performed using HCl solution and an ultrasonic cleaner. After leaching, the solar cells are washed using distilled water and dried in an oven. Decompression filtration is performed on the HCl solution, and ICP-OES (Inductively Coupled Plasma Optical Emission spectroscopy) full scan analysis is performed on the filtered solution. Furthermore, XRD (X-ray powder diffraction), XRF (X-ray fluorescence), and ICP-OES are performed on the dried solar cells after crushing, and the purity and recovery rate of Si are obtained. In this experiment, the concentration of acid solution, reaction temperature, reaction time, and ultrasonic intensity are considered as variables. The results show that the optimal process conditions for the selective recovery of Si from the solar cells are as follows: the concentration of acid solution = 3 M HCl, reaction temperature = 60℃, reaction time = 120 min, and ultrasonic intensity = 150 W. Further, the Si purity and recovery rate are 99.85 and 99.24%, respectively.

A Hydration Reaction and Strength Development Properties of Cement Using Pond Ash in Coal Fired Power Plant (화력 발전소 매립회를 치환한 시멘트의 수화반응 및 강도발현 특성)

  • Lee, Jae-Seung;Noh, Sang-Kyun;Shin, Hong-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.578-584
    • /
    • 2021
  • This study comparatively analyzed the properties of hydration reaction and strength development of four types of pond ash(PA) and fly ash(FA), aiming for the effective use of PA. The PA whose chlorine content was highest due to the seawater movement method had a faster setting time, higher cumulative heat, and greater initial strength development than those of FA due to the acceleration of the cement hydration reaction. However, the activity factor increase rate decreased after seven days of curing due to the rapid generation of early hydrates. The PA that contained impurities, such as a large amount of unburned carbon, had a delayed setting time due to the lower hydration reaction. Moreover, the strength was degraded in all curing ages. The PA whose chlorine content was lower due to the freshwater movement method and the amorphous content exhibited similar hydration reactivity and strength development characteristics compared to that of FA. The thermogravimetric analysis results verified that it had a similar level of Ca(OH)2 consumption and pozzolanic reactivity with that of FA. Conclusively, it is necessary to expand the application of the freshwater movement method and manage the ignition loss to raise PA's usability.

A Study on the Separation and Recovery of Useful Metallic Elements(Zn, Pb) from the 2nd Dust in Refining of Crude-Zinc Oxide (조산화아연의 정제과정에서 발생된 2차분진으로부터 유용금속원소(Zn, Pb)의 분리회수에 관한 연구)

  • Yoon, Jae-hong;Yoon, Chi-hyun
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.66-76
    • /
    • 2021
  • Electric arc furnace dust (EAFD) contains compounds, such as oxides and chlorides, including large quantities of Zn, Pb and Fe. An efficient and stable method for the extraction of metal elements from EAFD is the Rotary Kiln Process. This method is used to recover Zn in the form of crude ZnO (approximately 60%) via the addition of a reducing agent (coke, anthracite) and limestone (for basicity control) to EAFD. This process is commonly used in industry as well as in research and development. Currently, this method is used in many Korean commercial plants, producing approximately 150,000 tons of Crude ZnO per year. The majority of Zn is found in crude ZnO (approximately 76%). In addition components such as Pb, Cd, Sn, In, Fe, Cl, and F are present as oxides, chlorides, and alkaline compounds. This elements have an adverse effect on the zinc smelting process. Therefore, a refining process that eliminates these impurities is essential. In this study, we developed a process technology that efficiently separates Zn and Pb from byproducts (mainly chlorides). A bag filter was used to collect Zn and Pb generated during the dry purification process of crude ZnO. Pure components were recovered as metals or metal carbonate.

Ab-initio Calculations of Mg Silicate and (hydr)oxide Core-level Absorption Spectra (Mg 규산염 및 (수)산화물에 대한 제일원리 내각준위 흡수 스펙트럼 계산 연구)

  • Son, Sangbo;Kwon, Kideok D.
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.121-131
    • /
    • 2021
  • Magnesium (Mg) present in carbonate minerals as impurities has been used as a geochemical proxy to infer the environmental conditions where the minerals precipitated. The reliability of Mg geochemical proxies requires fundamental understanding of Mg incorporation into minerals based on accurate speciation of Mg 2+ in the crystal structure, which is determined mainly by application of X-ray absorption spectroscopy (XAS). However, high uncertainties are involved in interpreting the XAS spectra of minerals containing trace amount of Mg 2+. Because density function theory (DFT) can predict an XAS spectrum for a crystal structure, DFT calculations can reduce the uncertainties in the interpretation of the XAS spectrum. In this study, we calculated ab initio Mg K-edge absorption spectra of Mg silicates and (hydr)oxides based on DFT and analyzed the correlation between the calculated spectra and Mg structural parameters. Our ab initio Mg K-edge absorption spectra well reproduced the key features of the experimental spectra. The absorption-edge positions of the calculated spectra showed the weak positive correlation with the average Mg-O bond distance or Mg effective coordination number. The current study shows that DFT-based core-level spectroscopy method is a powerful tool in providing standard Mg K-edge spectra of diverse Mg minerals and determining the Mg chemical species within carbonate minerals.

Analysis of Recycled Raw Materials and Evaluation of Characteristics by Mixing Ratio for Recycling of Waste Vinyl (폐비닐 재활용을 위한 재생원료 분석 및 배합비율에 따른 특성 평가)

  • Ahn, Nak-Kyoon;Lee, Chan gi;Kim, Jung-Hwan;Park, Pil Hwan;Kim, Seung-Hwan;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • Waste vinyl generated from household waste has been used as a solid refuse fuel (SRF) due to the presence of impurities such as soil, metal, and glass; however, the amount of SRF used has been decreasing owing to recent environmental problems, thereby necessitating the need for recycling. In this study, the mixed recycled raw material produced from household waste vinyl and polyethylene (PE) single recycled raw material produced from agricultural waste vinyl were examined. Raw material analysis revealed that waste vinyl was mainly composed of polyethylene, and approximately 2% of ash remained in the mixed recycled raw material, whereas no ash was found in the PE single recycled raw material. In addition, the analysis of tensile strength according to the mixing ratio of the two recycled raw materials revealed that the highest tensile strength was approximately 16 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). In addition, the highest bending strength was approximately 39 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). Therefore, the possibility of recycling waste vinyl was suggested by investigating the change in strength characteristics according to the mixing ratio of the recycled raw materials.

Study on Characteristics of Change of Urea and Biuret Content by Temperature Variation in Urea Solution (요소수(Urea solution)의 온도변화에 따른 요소 및 뷰렛함량 변화 특성 연구)

  • Doe, Jin-woo;Park, Tae-sung;Lee, Yu-rim;Yim, Eui-soon;Lee, Joung-min;Kang, Hyung-kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1307-1319
    • /
    • 2018
  • As interests in the air pollution increases, many kinds of researches are underway on the reduction of air pollutants. The removal of nitrogen oxides from the emission gas of diesel vehicles using urea solution has shown a great effect. The quality of urea solution is strictly defined by domestic law, but the increase of impurities in urea solution reduces the effect of reducing nitrogen oxides. Therefore, in this study, the change of physical properties of urea solution was analyzed after heating the urea solution for a certain temperature and time. Also, the changes of physical properties of urea solution were analyzed according to kinds of storage container and temperature for storing the urea solution. After heating the urea solution for a certain period of time, the biuret content in urea solution increased and the content of urea decreased. As the urea content decreased, both density and refractive index decreased. In the storage stability test carried out at a constant temperature with iron and PET containers, no change in physical properties was observed.

Evaluation of Mechanical Test Characteristics according to Welding Position in FCAW Heterojunction (FCAW 이종접합에서 용접자세에 따른 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.649-656
    • /
    • 2019
  • Flux cored arc welding (FCAW), which is used widely in many fields, such as shipyards, bridge structures, construction machinery, and plant industry, is an alternative to shielded metal arc welding (SMAW). FCAW is used largely in the welding of carbon and alloy steel because it can be welded in all poses and obtain excellent quality in the field under a range of working conditions. In this study, the mechanical properties of welded parts were analyzed after different welding of SS400 and SM490A using FCAW. The following conclusions were drawn. The tensile test results satisfied the KS standard tensile strength in the range of 400~510 N/mm2 in all welding positions. The bending test confirmed that most of the specimens did not show surface breakage or other defects during bending and exhibited sufficient toughness, even after plastic deformation. The hardness test results were lower than the standard value of 350 Hv of KS B 0893. Similar to the hardness test, were greater than the KS reference value. The macro test revealed no internal flaws, non-metallic inclusions, bubbles or impurities on the entire cross section of the weld, and there were no concerns regarding lamination.

Rheological Properties of Cement Paste Mixed with Aqueously Dispersed Single-Walled Carbon Nanotubes (Single-Walled 탄소나노튜브 수용액 혼입 시멘트 페이스트의 유변학적 특성)

  • Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.113-121
    • /
    • 2019
  • Single walled carbon nanotube (SWCNT) has been used as a material for reinforcing various advanced materials because it has superior mechanical properties. However, pure SWCNT that does not have any functional group has a hydrophobic character, and exists as bundles due to the strong Van der Waals attraction between each SWCNT. Due to these reasons, it is very difficult to disperse SWCNTs in the water. In this work, in order to use SWCNT for production of cementitious composites, SWCNT was first dispersed in water to make an aqueous solution. Sodium deoxycholate (DOC) and Sodium dodecyl sulfate (SDS) were chosen as surfactants, and the dosage of DOC and SDS were 2wt% and 1wt%, respectively. Sonication and ultracentrifugation were applied to separate each SWCNT and impurities. Using such processed SWCNT solutions, cement paste was prepared and its shear stress vs. strain rate relationship was studied. The yield stress and plastic viscosity of cement paste were obtained using Bingham model. According to the results in this work, cement pastes made with DOC and SDS showed similar rheological behavior to that of air entrained cement paste. While cement paste made with DOC 2 wt.% SWCNT solution showed similar rheological behavior to that of plain cement paste, cement paste made with SDS 1 wt.% SWCNT solution showed different rheological behavior showing much less yield stress than plain cement paste.