Browse > Article
http://dx.doi.org/10.22807/KJMP.2021.34.2.121

Ab-initio Calculations of Mg Silicate and (hydr)oxide Core-level Absorption Spectra  

Son, Sangbo (Department of Geology, Kangwon National University)
Kwon, Kideok D. (Department of Geology, Kangwon National University)
Publication Information
Korean Journal of Mineralogy and Petrology / v.34, no.2, 2021 , pp. 121-131 More about this Journal
Abstract
Magnesium (Mg) present in carbonate minerals as impurities has been used as a geochemical proxy to infer the environmental conditions where the minerals precipitated. The reliability of Mg geochemical proxies requires fundamental understanding of Mg incorporation into minerals based on accurate speciation of Mg 2+ in the crystal structure, which is determined mainly by application of X-ray absorption spectroscopy (XAS). However, high uncertainties are involved in interpreting the XAS spectra of minerals containing trace amount of Mg 2+. Because density function theory (DFT) can predict an XAS spectrum for a crystal structure, DFT calculations can reduce the uncertainties in the interpretation of the XAS spectrum. In this study, we calculated ab initio Mg K-edge absorption spectra of Mg silicates and (hydr)oxides based on DFT and analyzed the correlation between the calculated spectra and Mg structural parameters. Our ab initio Mg K-edge absorption spectra well reproduced the key features of the experimental spectra. The absorption-edge positions of the calculated spectra showed the weak positive correlation with the average Mg-O bond distance or Mg effective coordination number. The current study shows that DFT-based core-level spectroscopy method is a powerful tool in providing standard Mg K-edge spectra of diverse Mg minerals and determining the Mg chemical species within carbonate minerals.
Keywords
Magnesium; X-ray absorption spectroscopy; density functional theory; Mg silicates; Mg (hydr)oxides;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Little, S.H., Sherman, D.M., Vance, D. and Hein, J.R., 2014, Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts. Earth and Planetary Science Letters, 396, 213-222.   DOI
2 Mizoguchi, T., Tanaka, I., Gao, S.P. and Pickard, C.J., 2009, First-principles calculation of spectral features, chemical shift and absolute threshold of ELNES and XANES using a plane wave pseudopotential method. Journal of Physics Condensed Matter, 21, 104204.   DOI
3 Monkhorst, H. and Pack, J., 1976, Special points for Brillouin zone integrations. Physical Review B, 13, 5188-5192.   DOI
4 Pavese, A., Artioli, G. and Prencipe, M., 1995, X-ray single-crystal diffraction study of pyrope in the temperature range 30-973 K. American Mineralogist, 80, 457-464.   DOI
5 Perdew, J., Burke, K. and Ernzerhof, M., 1996, Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.   DOI
6 Pickard, C.J., 1997, Ab Initio Electron Energy Loss Spectroscopy, Ph.D. dissertation, University of Cambridge, 151p.
7 Redfern, S.A., Harrison, R.J., O'Neill, H.S.C. and Wood, D. R., 1999, Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600 ℃ from in situ neutron diffraction. American Mineralogist, 84, 299-310.   DOI
8 Alvarez, C.C., Quitte, G., Schott, J. and Oelkers, E.H., 2021, Nickel isotope fractionation as a function of carbonate growth rate during Ni coprecipitation with calcite. Geochimica et Cosmochimica Acta, 299, 184-198.   DOI
9 Bostrom, D., 1987, Single-crystal X-ray diffraction studies of synthetic Ni-Mg olivine solid solutions. American Mineralogist, 72, 965-972.
10 Cusack, M., Perez-Huerta, A., Janousch, M. and Finch, A. A., 2008, Magnesium in the lattice of calcite-shelled brachiopods. Chemical Geology, 257, 59-64.   DOI
11 Hoppe, R., 1979, Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift Fur Kristallographie-Crystalline Materials, 150, 23-52.   DOI
12 Dzikowski, T.J., Groat, L.A. and Grew, E.S., 2007, The geometric effects of VFe2+ for VMg substitution on the crystal structures of the grandidierite-ominelite series. American Mineralogist, 92, 863-872.   DOI
13 Fink, J., 1992, Transmission electron energy-loss spectroscopy. Unoccupied Electronic States (eds. Fuggle, J. C., Inglesfield, J. E.), Springer-Verlag, 203-241.
14 Gaetani, G.A. and Cohen, A.L., 2006, Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies. Geochimica et Cosmochimica Acta, 70, 4617-4634.   DOI
15 Ildefonse, P., Calas, G., Flank, A.M. and Lagarde, P., 1995, Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 97, 172-175.
16 Lear, C.H., Elderfield, H. and Wilson, P.A., 2000, Cenozoic Deep-Sea Temperatures and Global from Mg/Ca in Benthic Foraminiferal Calcite. Science, 287, 269-272.   DOI
17 Levien, L. and Prewitt, C.T., 1981, High-pressure structural study of diopside. American Mineralogist, 66, 315-323.
18 Li, D., Peng, M. and Murata, T., 1999, Coordination and local structure of magnesium in silicate minerals and glasses: Mg K-edge XANES study. The Canadian Mineralogist, 37, 199-206.
19 Dong, S. and Wasylenki, L.E., 2016, Zinc isotope fractionation during adsorption to calcite at high and low ionic strength. Chemical Geology, 447, 70-78.   DOI
20 Hugh-Jones, D.A. and Angel, R.J., 1994, A compressional study of MgSiO3 orthoenstatite up to 8.5 GPa. American Mineralogist, 79, 405-410.
21 Tipper, E.T., Galy, A., Gaillardet, J., Bickle, M.J., Elderfield, H. and Carder, E.A., 2006, The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios. Earth and Planetary Science Letters, 250, 241-253.   DOI
22 Fukushi, K., Suzuki, Y., Kawano, J., Ohno, T., Ogawa, M., Yaji, T. and Takahashi, Y., 2017, Speciation of magnesium in monohydrocalcite: XANES, ab initio and geochemical modeling. Geochimica et Cosmochimica Acta, 213, 457-474.   DOI
23 Saenger, C. and Wang, Z., 2014, Magnesium isotope fractionation in biogenic and abiogenic carbonates: Implications for paleoenvironmental proxies. Quaternary Science Reviews, 90, 1-21.   DOI
24 Staroverov, V.N., Scuseria, G.E., Tao, J. and Perdew, J.P., 2004, Tests of a ladder of density functionals for bulk solids and surfaces. Physical Review B-Condensed Matter and Materials Physics, 69, 1-11.
25 Trcera, N., Cabaret, D., Rossano, S., Farges, F., Flank, A. M. and Lagarde, P., 2009, Experimental and theoretical study of the structural environment of magnesium in minerals and silicate glasses using X-ray absorption near-edge structure. Physics and Chemistry of Minerals, 36, 241-257.   DOI
26 Vanderbilt, D., 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892-7895.   DOI
27 Yamamoto, T., 2008, Assignment of pre-edge peaks in K edge x-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole?. X-Ray Spectrometry: An International Journal, 37, 572-584.   DOI
28 Yoshimura, T., Tamenori, Y., Iwasaki, N., Hasegawa, H., Suzuki, A. and Kawahata, H., 2013, Magnesium K-edge XANES spectroscopy of geological standards. Journal of Synchrotron Radiation, 20, 734-740.   DOI
29 Hazen, R.M., 1976, Effects of temperature and pressure on the cell dimension and X-ray temperature factors of periclase. American Mineralogist, 61, 266-271.
30 Yoshimura, T., Tamenori, Y., Takahashi, O., Nguyen, L.T., Hasegawa, H., Iwasaki, N. and Kawahata, H., 2015, Mg coordination in biogenic carbonates constrained by theoretical and experimental XANES. Earth and Planetary Science Letters, 421, 68-74.   DOI
31 Alvarez, C.C., Quitte, G., Schott, J. and Oelkers, E.H., 2020, Experimental determination of Ni isotope fractionation during Ni adsorption from an aqueous fluid onto calcite surfaces. Geochimica et Cosmochimica Acta, 273, 26-36.   DOI
32 Barker, S., Cacho, I., Benway, H. and Tachikawa, K., 2005, Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: A methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews, 24, 821-834.   DOI
33 Blochl, P.E., 1994, Projector augmented-wave method. Physical Review B, 50, 17953.   DOI
34 Catti, M., Ferraris, G., Hull, S. and Pavese, A., 1995, Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: a powder neutron diffraction study. Physics and Chemistry of Minerals, 22, 200-206.   DOI
35 Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K. and Payne, M.C., 2005, First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220, 567-570.
36 De Groot, F.M.F., 2007, Novel Techniques and Approaches to Unravel the Nature of X-Ray Absorption Spectra. AIP Conference Proceedings, 882, 37-43.
37 Finch, A.A. and Allison, N., 2007, Coordination of Sr and Mg in calcite and aragonite. Mineralogical Magazine, 71, 539-552.   DOI
38 Gao, S.P., Pickard, C.J., Perlov, A. and Milman, V., 2009, Core-level spectroscopy calculation and the plane wave pseudopotential method. Journal of Physics Condensed Matter, 21, 104203.   DOI
39 Finch, A.A. and Allison, N., 2008, Mg structural state in coral aragonite and implications for the paleoenvironmental proxy. Geophysical Research Letters, 35, L08704.   DOI
40 Foster, L.C., Finch, A.A., Allison, N., Andersson, C. and Clarke, L.J., 2008, Mg in aragonitic bivalve shells: Seasonal variations and mode of incorporation in Arctica islandica. Chemical Geology, 254, 113-119.   DOI
41 Son, S., Li, W., Lee, J.Y. and Kwon, K.D., 2020, On the coordination of Mg2+ in aragonite: Ab-initio absorption spectroscopy and isotope fractionation study. Geochimica et Cosmochimica Acta, 286, 324-335.   DOI