• Title/Summary/Keyword: Impulsive pressure

Search Result 100, Processing Time 0.022 seconds

Optimal Structural Design of a Tonpilz Transducer Considering the Characteristic of the Impulsive Shock Pressure (충격 특성을 고려한 Tonpilz 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.987-994
    • /
    • 2008
  • The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.

Characteristics of Impulsive Noise of Waterfront Construction Site and Its Effects on Fishes (수변 공사에 의한 충격음의 특성과 어류에 미치는 영향)

  • Bae, Jong-Woo;Park, Ji-Hyun;Yoon, Jong-Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.928-934
    • /
    • 2009
  • Underwater impulsive sound such as underwater blasting noise, piling noise and stone breaking hammer affects marine animal hearing response and organs. This study describes the characteristics of various impulsive noise from waterfront construction site and their effect on fish. Time constant, peak pressure, energy and SEL(sound exposure level) of four different underwater impulsive sounds are quantified. Auditory and non-auditory tissue damage ranges are derived by comparing their quantities to the exposure criteria for fish. Damage ranges of auditory tissue and non-auditory tissue of underwater boring blast of 150 kg of charge, are about 100 m and 300 m, respectively. Other three impulsive sounds also gives damage effects but less than that of underwater boring blast.

TWO-PHASE WAVE PROPAGATIONS PREDICTED BY HLL SCHEME WITH INTERFACIAL FRICTION TERMS (계면마찰항을 고려한 이상유동에서 파동전파에 대한 수치적 연구)

  • Yeom, G.S.;Chang, K.S.;Chung, M.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.115-119
    • /
    • 2009
  • We numerically investigated propagation of various waves in the two-phase flows such as sound wave, shock wave, rarefaction wave, and contact discontinuity in terms of pressure, void fraction, velocity and density of the two phases. The waves have been generated by a hydrodynamic shock tube, a pair of symmetric impulsive expansion, impulsive pressure and impulsive void waves. The six compressible two-fluid two-phase conservation laws with interfacial friction terms have been solved in two fractional steps. The first PDE Operator is solved by the HLL scheme and the second Source Operator by the semi-implicit stiff ODE solver. In the HLL scheme, the fastest wave speeds were estimated by the analytic eigenvalues of an approximate Jacobian matrix. We have discussed how the interfacial friction terms affect the wave structures in the numerical solution.

  • PDF

Study on the plastic deformation of a cylinder subjected to localized impulsive pressure (국부충격하중을 받는 원관의 삭성변형에 관한 고찰)

  • ;;Zoo, Young Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 1981
  • The effect of axial stress on the plastic deformation of rigid-perfectly plastic cylindrical tube under the impulsive band pressure is investigated. It is assumed that the tube is constructed with the material of Tresca's yield criterion. A closed from sloution is obtained for a rectangular pulse shape of uniform band pressure by using the circumscribed yield surface. The analysis shows that the effect ot exial stress is negligible when the dimensionless axial stress(n$\sub$x/= N$\sub$x/.delta.$\sub$y/H) is less than 0.2 or the dimensionless whdth of band pressure(.xi.=C/.root.RH) is greater than 2, but the effect of axial stress is of considerable importance when the axial stress is greater than 0.3 and the width of band pressure is less than 1.

Numerical prediction of transient hydraulic loads acting on PWR steam generator tubes and supports during blowdown following a feedwater line break

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Kim, Jongkap
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.322-336
    • /
    • 2021
  • This paper presents a numerical prediction of the transient hydraulic loads acting on the tubes and external supports of a pressurized water reactor (PWR) steam generator (SG) during blowdown following a sudden feedwater line break (FWLB). A simplified SG model was used to easily demonstrate the prediction. The blowdown discharge flow was treated as a flashing flow to realistically simulate the transient flow fields inside the SG and the connected broken feedwater pipe. The effects of the SG initial pressure or the broken feedwater pipe length on the intensities or magnitudes of transient hydraulic loads were investigated. Then predictions of the decompression pressure wave-induced impulsive pressure differential loads on SG tubes and the transient blowdown loads on SG external supports were demonstrated and the general aspects of transient responses of such transient hydraulic loads to the FWLB were discussed.

Experimental Investigations on Slamming Impacts by Drop Tests (낙하실험에 의한 슬래밍 충격의 실험 연구)

  • Shin, Hyun-Kyoung;Kim, Sung-Chul;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.410-420
    • /
    • 2010
  • When ships are sailing with large motions in rough waves, the slamming phenomenon occurs and the ships suffer from impulsive pressure loadings. Recently, ships are becoming lager and faster than before and it becomes more possible that the ships experience larger impacts on their bows and sterns. Many researchers have been performing the investigations on slamming experimentally and theoretically for a long time. Most of the research reported in the open literature focused on how to accurately estimate the amplitude of the peak pressure of slamming. According to the results of a recently published work, not only the amplitude of peak pressure but also the width of the peak may play an important role in predicting the extents of damage of impacted structures. The uncertainty of impulsive pressure loadings due to slamming has been indicated by many researchers. However, probabilistic treatments of the impulsive pressure loadings are few. In this study, drop tests were conducted on wedges having dead-rise angles of $0^{\circ}$ and $10^{\circ}$. Not only the amplitude of peak pressure but also the width of peak pressure were measured. Furthermore, the variations of those values are also provided for the probabilistic approach of the slamming problem.

Effect of Tunnel Entrance Hood on Entry Compression Wave (입구후드가 고속철도 터널입구의 압축파에 미치는 영향)

  • Kim, Heuy-Dong;Kim, Tae-Ho;Kim, Dong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.58-68
    • /
    • 1999
  • The entry compression wave, which forms at the entrance of a high-speed railway tunnel, is closely related to the pressure transients in the train/tunnel systems as well as an impulsive noise appearing at the exit of the tunnel. In order to alleviate such undesirable phenomena, some control strategies have been applied to the compression wave propagating inside the tunnel. The objective of the current work is to investigate the effect of tunnel entrance hoods on the entry compression wave at the vicinity of the tunnel entrance. Three types of entrance hoods were tested by the numerical method using the characteristics of method for a wide range of train speeds. The results show that the maximum pressure gradient of compression wave can be considerably reduced by the tunnel entrance hood. Optimum hood shape necessary to reduce the pressure transients and impulsive noise was found to be of an abrupt type hood with its cross-sectional area 2.5 times the tunnel area. It is believed that the current results are highly useful in predicting the effects of entrance hoods and in choosing the shape of proper hood.

Characteristics of High-Speed Railway Tunnel Entry Compression Wave (고속철도 터널입구에서 형성되는 압축파의 특성에 관한 연구)

  • Kim, Heuy-Dong;Kim, Tae-Ho;Lee, Jong-Su;Kim, Dong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.234-242
    • /
    • 1999
  • Flow phenomena such as the pressure transients Inside a high-speed railway tunnel and the Impulsive waves at the exit of the tunnel are closely associated with the characteristics of the entry compression wave, which is generated by a train entering the tunnel. Tunnel entrance hood may be an effective means for alleviating the Impulsive waves and pressure transients. The objective of the current work is to explore the effects of the train nose shape and the entrance hood on the characteristics of the entry compression wave. Numerical calculations using the method of characteristics were applied to one-dimensional, unsteady, compressible flow field with respect to high-speed railway/tunnel systems. Two types of the entrance hoods and various train nose shapes were employed to reveal their influences on the entry compression wave for a wide range of train speeds. The results showed that the entry compression wave length increases as the train nose becomes longer and the train speed becomes lower. The entry compression wave length in the tunnel with hood becomes longer than that of no hood. Maximum pressure gradient in the compression wavefront reduces by the entrance hood. The results of the current work provide useful data for the design of tunnel entrance hood.

An Evaluation of Silencer Characteristics by Live Firing Test (실사격에 의한 소음기 특성 평가)

  • Kang, Kuk-Jeong;Ko, Sung-Ho;Kwak, Young-Kyun;Lee, Duck-Joo;Lee, In-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.217-224
    • /
    • 2007
  • The present work addresses an experimental study on sound attenuation characteristics of silencer by live firing test. When a gun fires, there exists excessive noise which propagates as a form of blast wave. As muzzle energy of the weapon systems increases, the level of impulsive noise also increases. It is well known that the impulsive noise from a gun gives a serious damage to human bodies and structures. The adverse effects of impulsive sound also cause both social and military problems. So it is very important to study the characteristics of the impulsive sound attenuation. The live firing test is performed to evaluate the effect of four different silencers. The test result is compared with the case of bare muzzle which is not installed the silencer. The frequency characteristics are also analyzed to investigate the diminution of sound pressure level. The results of this study will be helpful to the designing silencer for large caliber weapon systems.

A study on accumulated damage of steel wedges with dead-rise 10° due to slamming loads

  • Seo, Byoungcheon;Truong, Dac Dung;Cho, Sangrai;Kim, Dongju;Park, Sookeun;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.520-528
    • /
    • 2018
  • This paper presents the results of experimental investigation on the elastic-plastic response of steel unstiffened wedges with dead-rise $10^{\circ}$ subjected to repeated impulsive pressure loadings. Repeated drop tests were performed with both wedge thickness and drop height varied. The pressure and histories were recorded during the tests and the permanent deflections were measured after every drop. Using the recorded test result, the effects of flexibility of wedges and repetition have been investigated. From the pressure history obtained from the tests the characteristics of the impulses were identified. Numerical simulations of the tests were made using the measured pressure history and the permanent deflection predictions were compared with those of the experiments.