• 제목/요약/키워드: Impulsive differential equations

검색결과 54건 처리시간 0.026초

MONOTONE ITERATIVE TECHNIQUE FOR IMPULSIVE DIFFERENTIAL EQUATIONS WITH TIME VARIABLES

  • Qi, Jian-Gang;Liu, Yan-Sheng
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.539-552
    • /
    • 2000
  • In this paper, we established the general comparison principles for IVP of impulsive differential equations with time variables, which strictly extend and improve the precious comparison results obtained by V. Lakes. et.al . and S.K.Kaul([3]-[7]). Whit the general comparison results, we constructed the monotone iterative sequences of solution for IVP of such equations which converges the maximal and minimal and minimal solutions , respectively.

CONTROLLABILITY OF SECOND-ORDER IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY

  • Arthi, Ganesan;Balachandran, Krishnan
    • 대한수학회보
    • /
    • 제48권6호
    • /
    • pp.1271-1290
    • /
    • 2011
  • The purpose of this paper is to investigate the controllability of certain types of second order nonlinear impulsive systems with statedependent delay. Sufficient conditions are formulated and the results are established by using a fixed point approach and the cosine function theory Finally examples are presented to illustrate the theory.

UNIQUENESS OF SOLUTION FOR IMPULSIVE FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

  • Singhal, Sandeep;Uduman, Pattani Samsudeen Sehik
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.171-177
    • /
    • 2018
  • In this research paper considering a differential equation with impulsive effect and dependent delay and applied Banach fixed point theorem using the impulsive condition to the impulsive fractional functional differential equation of an order ${\alpha}{\in}(1,2)$ to get an uniqueness solution. At last, theorem is verified by using a numerical example to illustrate the uniqueness solution.

EXISTENCE OF THREE POSITIVE PERIODIC SOLUTIONS OF NEUTRAL IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Yuji;Xia, Jianye
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.243-256
    • /
    • 2010
  • This paper is concerned with the neutral impulsive functional differential equations $$\{{x'(t)\;+\;a(t)x(t)\;=\;f(t,\;x(t\;-\;\tau(t),\;x'(t\;-\;\delta(t))),\;a.e.\;t\;{\in}\;R, \atop {\Delta}x(t_k)\;=\;b_kx(t_k),\;k\;{\in}\;Z.$$ Sufficient conditions for the existence of at least three positive T-periodic solution are established. Our results generalize and improve the known ones. Some examples are presented to illustrate the main results.

BOUNDEDNESS RESULTS FOR IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAYS

  • LI HUA;LUO ZHIGUO
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.261-272
    • /
    • 2005
  • In this paper, boundedness criteria are established for solutions of a class of impulsive functional differential equations with infinite delays of the form $x'(t) = F(t, x(\cdot)), t > t^{\ast} {\Delta}x(t_{k})= I(t_{k}, x(t_{k}^{-})), k = 1,2,...$ By using Lyapunov functions and Razumikhin technique, some new Razumikhin-type theorems on boundedness are obtained.

ULAM STABILITIES FOR IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS

  • Sandhyatai D. Kadam;Radhika Menon;R. S. Jain;B. Surendranath Reddy
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.197-208
    • /
    • 2024
  • In the present paper, we establish Ulam-Hyres and Ulam-Hyers-Rassias stabilities for nonlinear impulsive integro-differential equations with non-local condition in Banach space. The generalization of Grownwall type inequality is used to obtain our results.

EXISTENCE, UNIQUENESS AND STABILITY OF IMPULSIVE STOCHASTIC PARTIAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAYS

  • Anguraj, A.;Vinodkumar, A.
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.739-751
    • /
    • 2010
  • This article presents the result on existence, uniqueness and stability of mild solution of impulsive stochastic partial neutral functional differential equations under sufficient condition. The results are obtained by using the method of successive approximation.