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1. Introduction

Neutral differential equations arise in many area of science and engineering,
have received much attention in the last decades. The ordinary neutral differ-
ential equation is very extensive to study the theory of aeroelasticity, see Kol-
manvskii and nosov [10] and the lossless transmission lines [4] and the references
therein. Partial neutral differential equations with delays are motivated from sta-
bilization of lumped control systems, theory of heat conduction in materials [7, 8]
and the references therein. E.Hernandez and Donal O’Regan [6], studied partial
neutral differential equations by defining S-mild solution to the neutral system
by assuming some temporal and spatial regularity type condition for the func-
tion t — g(t, z;) is used to study some neutral system. In [15], Rodkina studied
several existence results with an unbounded delay. In [4], Govindan generalized
the main result of [15].

Recently impulsive differential equations are also well to model problems see
[11, 18]. There is much notice in the field of fixed impulsive type equations
[1, 7] and the references therein. The study of impulsive stochastic differential
equations (ISDEs) is a new research area. There are few publications in the theory
of ISDEs, Jun Yang et al.[9], studied the stability analysis of impulsive stochastic

Received August 6, 2009. Revised August 12, 2009. Accepted September 14, 2009.
*Corresponding author.

© 2010 Korean SIGCAM and KSCAM .
739



740 A.Anguraj and A.Vinodkumar

differential equations with delays. Zhigno Yang et al.[20], studied the exponential
p- stability of impulsive stochastic differential equations with delays. In [16, 17],
R. Sakthivel and J. Luo studied the existence and asymptotic stability in p-th
moment of mild solutions to impulsive stochastic partial differential equations
with and without infinite delays through fixed point theory. Motivated by [13,
14], we will generalize the existence and uniqueness of the solution to impulsive
stochastic partial neutral functional differential equations (ISNFDEs) under non-
Lipschitz condition and Lipschitz condition. Moreover, we study the stability
through the continuous dependence on the initial values by means of Corollary
of Bihari inequality. Further, we refer 3, 12, 19].

The paper is organized as follows. In section 2, we recall briefly the notations,
definitions, lemmas and preliminaries facts which are used throughout this paper.
In section 3, we study the existence and uniqueness of ISNFDEs by reducing the
linear growth conditions. In section 4, we study the continuous dependence on
the initial values. Finally in section 5, an example is presented to illustrate our
results

2. Preliminaries

Let X, Y bereal separable Hilbert spaces and L(Y, X) be the space of bounded
linear operators mapping Y into X. For convenience, we shall use the same
notations ||.|| to denote the norms in X, ¥ and L(Y, X) without any confusion.
Let (92, B, P) be a complete probability space with an increasing right continuous
family {B;}+>0 of complete sub o-algebra of B. Let {w(t) : ¢ > 0} denote a Y-
valued Wiener process defined on the probability space (€2, B, P) with covariance
operator @, that is £ < w(t),z >y< w(s),y >y= (t As) < Qz,y >y, for
all z,y € Y, where @ is a positive, self-adjoint, trace class operator on Y. In
particular, we denote w(t), t > 0, a Y- valued Q- Wiener process with respect to
{B:}t>o0-

In order to define stochastic integrals with respect to the (- Wiener process
w(t), we introduce the subspace Yy = Q'/%(Y) of Y which, endowed with the
inner product < u,v >y,=< Q™ /2u, Q~/?v >y is a Hilbert space. We assume
that there exists a complete orthonormal system {e;};>; in Y, a bounded se-
quence of nonnegative real numbers A; such that Qe; = A\je;, i =1,2,..., and a
sequence {f;}i>1 of independent Brownian motions such that

<w(t),e >= Z VAi<e,e>pi(t), e€y,
n=1

and .B; = B}’, where B}’ is the sigma algebra generated by {w(s) : 0 < s <'t}.
Let LY = Lo(Yy, X) denote the space of all Hilbert- Schmidt operators from Yj
into X. It turns out to be a separable Hilbert space equipped with the norm
a3 0o = = tr((uQ'/?)(uQ'/?)*) for any u € LY. Clearly for any bounded operators

pE L(Y X) this norm reduces to ||,u||L0 = tr(pQu*).
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In this article, we will examine the impuIsive stochastic partial neutral func-
tional differential equations of the form

d(:c(t) + g(t, :z:t)) = [Az(t) + f(t, zo)]dt + a(t, z:)dw(t), t # tr, 0 <t < T,
Ax(ty) = () —z(t;) = I(z(t)), t=1tx, k=1,2,...m,
x(t) = ¢ € Dy ((—00,0], Xy), (1)

where A is the infinitesimal generator of an analytic semigroup of bounded
linear operators S(t) = {S(t)}+>0 with D(A) C X. If S(t) is uniformly bounded
analytic semigroup such that 0 € p(A), then it is possible to define the fractional
power (—A"), for 0 < n < 1, as a closed linear operator with dense domain
D(—A") in X. If X, represents the space D(—A") endowed with norm |- ||, then
we have the following properties:

Lemma 1. [12] Assume that the following conditions hold:

i: For0 <n <1, X, is a Banach space.

i : For 0 < n < B <1, the embedding X5 — X, is continuous.

112 : There exists a constant C,, > 0 depending on 0 <n <1 such that

2 o On
[—ATS()|? < 2, ¢> 0.

We now make the system (1) precise : Let A : X — X be the infinitesimal
generator of an analytic semigroup {S(t),¢ > 0} defined on X. Let the functions
[ R"xD, - X;9g:R*%xD,, - X;a:R"xD, — L(Y, X), where Rt = [0, 00),
are Borel measurable. Here D, = D((—o00,0], X,) denote the family of all right
piecewise continuous functions with left-hand limit ¢ from (—o0,0] to X,. The
phase space D((—o00,0], X,) is assumed to be equipped with the norm |[|¢]|; =

sup |¢(f)]. We also assume D% ((—00,0], X,) to denote the family of all
—-00<0<0

almost surely bounded, By-measurable, D,- valued random variables. Further,
let By is a Banach space of all B;-adapted process ¢(t, w) with almost surely
continuous in ¢ for fixed w € 2 with norm defined for any ¢ € Br

lellsr = ( sup Ellgl|7)*/2.
0<t<T

Furthermore, the fixed moments of time ¢; satisfies 0 < t1 < ... <ty < T, :z:(t;f)
and z(t;) represent the right and left limits of z(¢) at ¢ = ¢, respectively. Also
Az(t;) = z(t]) — =(ty), represents the jump in the state z at time t; with Iy,
determining the size of the jump.

Lemma 2. [2] LetT > 0 and up > 0, u(t), v(t) be continuous functions on [0, T).
Let K : Rt — R be a concave continuous and nondecreasing function such that
K(r)>0 forr>0. If

u(t) <wup + /t v(s)K(u(s))ds for all0 <t <T,
0

then
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t
u(t) < G"I(G(uo) +/ ’U(s)ds) for all such t € [0,T] that
0

t
G(ug) +/ v(s)ds € Dom(G™1),
- 0
where G(r) = f: ?d(ss—), r >0 and G~! is the inverse function of G. In particular,
if, moreover, uo =0 and [, KL(SsS =00, then u(t) =0 for all0 <t < T.
In order to obtain the stability of solutions, we givé the extended Bihari in-
equality

Lemma 3. [13] Let the assumptions of Lemma 2 hold. If
T
u(t) < wup —i—/ v(s)K (u(s))ds for all0 <t < T,
t

T |
then u(t) < G™1 (G’(ug) +/ v(s)ds) for all such t € [0,T] that
t

- ,
Gluo) + / v(s)ds € Dom(G~Y),
t .
where G(r) = ff ?{d(s—s), r >0 and G~ is the inverse function of G.
Corollary 1. [13] Let the assumptions of Lemma 2 hold and v(t) > 0 for t €
[0,T). If for all € > 0, there exists t1 > 0 such that for 0 < ug <, ff; v(s)ds <
f;@ ?d(s—s; holds. Then for every t € [t1,T], the estimate u(t) < € holds.

Lemma 4. [3] For any r > 1 and for arbitrary LY- valued predictable process
¢)(.) s t r
sup Bl [ @wdu@ = (rer - )Y ([ Ele) 1))

s€[0,t] 0

Definition 1. A semigroup {S(t), t > 0} is said to be uniformly bounded if
S(#)|| £ M for all t > 0, where M > 1 is some constant. If M = 1, then the
semigroup is said to be contraction semigroup.

Definition 2. A stochastic process {z(t),t € (=00, T}, (0 < T < 00) is called a
mild solution of equation (1), if '
(1) z(t) is By adapted;
(il) z(t) satisfies the integral equation
( pEe D%O((—OO,G],XQ), 7 t G‘(—OO, O]’
- t
S()[0(0) + 9(0,)] = ot ) = [ AS(t = gl 22}
z(t) = { t ¢ V0
+/ S(t — s)f(s,xzs)ds +/ S(t — s)a(s,xs)dw(s) (2)
0

+ OZ S(t — te) In(z(tr)), a.s t € [0,T].

\ o<t <t
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3. Existence and uniqueness

In this section, we discuss the existence and uniqueness of mild solution of the
system (1). We need the following hypotheses to use in our results. '
Hypotheses:

(Hp) : A is the infinitesimal generator of an analytic semigroup S(t), whose
domain D(A) is dense in X.

(H3) : For each z,y € D,, and for all t € [0, T, such that,

£t 2e) = F(Eye) 1V llat, 2) — alt, y)lI* < K(llz = yl?),

where K(-) is a concave non—decreasing function from R* to N, such that
K(0) =0, K(u) >0, for u> 0 and [, 7% Ry = o©-

(H3) : Assuming that there exists a positive number Ly >0 such that for any
z,y € D, and for t € [0,T], we have

I(=A)"g(t, z0) — (=A)"g(t, ye)I” < Lgllz — w7,

(Hy) : The function I, € C(X,X) and there exists some constant hy, such
that

Ik (z(te)) — Ie(yE))? < hillz —yl|?, foreachz,y € Dy, k=1,2...,m

(Hs) : For all t € [0,T], it follows that f(¢,0), (—A)"g(t,0),a(t,0), Ix(0) €
L?, for k=1,2...,m such that

1702V [I(=A)"g(t, O V fla(t, 0)[1* V II()]I* < o,

where k¢ > 0 is a constant.
Let us now introduce the successive approximations to equation (2) as follows

[ o(t), t € (—00,0], forn=0,1,2,..
S(t)(0), t €[0,T], for n = 0;
S(t) [0(0) +9(0,9)] — g(t, x}) — / AS(t — s)g(s, x3)ds
z"(t) = 4 t ¢ V0
/ S(t — s)f(s,z2 Nds +/ S(t — s)a(s,z2 Hdw(s) (3)
0
+ Y St—te)Ik(@ (), as te[0,T], forn=1,2,.

with an arbitrary non-negative initial approximation z° € Br.

Note that the above scheme is not explicit as the function g on the right hand
side of equation (3) depends explicitly on z™. But, this seems to be standard
when one considers neutral equations, see [4, 5, 15].

Theorem 1. Let the assumptions (H1) — (Hs) hold, then the system (1) has
unique mild solution x(t) in Br provided Q = max{Q1,Qs} < 1 and

E{ sup ||z"(t) —z(t)||*’} =0 asn— oo
0<t<T
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where {x"(t)}, -, are the successive approrimations (3).

Proof . Let z° € Br be a fixed initial approximation to (3). To begin with
under assumptions (Hy) - (Hs), @; > 0,7 = 1,...,12, are some constants and
observing that [|S(t)|| < M for some M > 1 and all ¢t € [0,T]. Then for any

n > 1, we have,
E lz"(t)|]* < 6M2E |lp(0) + 9(0, )2
+12[ — ATPE[I(=AM)g(t,27) — (—AT)g(t,0)|I> + |(—AT)g(t,0)[|°]

t
+12TE / | — AY8(t — $) |2 [Il(—A")g(s, 27) — (—A)g(s,0)]1* + [|(—A")g(s,0)||*] ds
0
t
+12TM2E/ [||f(s,xg—1 —f(s,0)|[2+||f(s,0)||2]ds
0 .
t
t12M2E / [la(s,22) — a(s, 0)|12 + lla(s,0)]17] ds
0

+12M°mE Y _ [I1(" () — Ie(O)II + 11 (0) 1]
k=1

From the Lemma 1, (H3) and (Hs) the following relation holds:

B(-A)8(t - s)g(s, 2" )I* = Ell(-A)S(t — s)(~A")g(s, 2.)|*
< 2(-ATS( )P [Bll(~AMg(s,27) — (~ANg(s, O + Ell(—AM)g(s, O

20]_—7"

S (t — 5)20-m)

[L9E||x“||§ + no]. (4)

Thus from the above,
Ellz"®)* < 12M[E|p(0)|*+ E|l9(0,9)|]

+12] = A2 [LgEnx"n? + no]

t
2C: -
0

t
+12(T + 1)M2E/ [K(lz"~112) + ro|ds
0

m
+12M2m Y~ [h Bz 112 + o]
k=1 )
12M2(T+1) . [* _ 12M2m > 0 hy _
—————F | K(lz"2)ds + iz {Ilw” 1II?}
1-Q 0 1-Q

Ellz"? < Q2+

where, Q1 = 12(]| — A™7||? + 252=4T27) L.
Given that K(-) is concave and K(0) = 0, we can find a pair of positive con-
stants a and b such that K(u) < a+bu, for all u > 0, and applying mathematical



Existence, uniqueness and stability of mild solutions 745

induction, we get

n 12M3*(T + 1)b
Ele"} < Qu+ Bl )
- 1
= E 0
L !
where, (3 = Q2 + -LZIUIL—C;I)TQ, we know that,
E|lz°@®)])" < M2E[0(0)[* = Qu < co. | (6)

Thus, sup E na:OHt < 00, then from (5), sup E Hx"H? <oo,foralln =1,2,...
t€[0,T] t€[0,T]

and t € [0, T]. This proves the boundedness of {z"}.

Let us next show that {z"} is Cauchy in Br. For this, choose T} € [0,T) such

that

5M2(Ty + I)K((t — 5)" 5M2%(Ty +1) (t—s)"

Qo, forall 0 <t <Th,

Qg) <

1 - Qs (n)! 1-Qs (n)!
consider,
n n 2 C n n
Bl (t) —a"®)|” < 5(I - A7 + LT Ly Bl - 27}
2n —
+F5M2(T + 1) / K(E|z" — " |2)ds
0
+5M*m > hiEllz™ — "7,
k=1
Thus,
OSMEATy +1) [
plent —ar} < POED Mgmpen—oipas @)
1-Qs 0
M2m 3 i b
= E wn_wn—l 2’
=0, I Iz

where, Q5 = 5(|| A2 4 QMT%) L,. Moreover,
=" @) =2°@[]° = 1S®)9(0, ¢) - [9(t, 2}) — 9(t,3D)] — g(t, )
- /Ot AS(t — s)[g(s, z2) — g(s,2%)] ds
— /0 t AS(t — s)g(s,z0)ds + /0 t‘ S(t - s)f(s,z)ds

+/ S(t — s)a(s,z3)dw(s) + Z S(t — tk)Ik(xO(tk))||2.‘
0

0<t <t
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Then, we get

16([Il = A7+ ST Ly + MPm T ) .
s Bl

EH:cl -:cOHf < Qe+
16M2(T1 + 1)/ K(E|2°

taking supremum over ¢, and from (6), we get

2 i
Qs+ M 1) / K(Q4)ds
0

sup FE “a:l — xOHf

te{0,7y] B 1-Q~
< Qo (8)
Thus applying mathematical induction in (7) and from (8),
2 i AY
sup E Hxn-ﬂ _mnHQ < W/ K(M sup E‘Ha:1 -—ngni)ds
te(0,T1] t 1-Qs  J, nl ieo,m)
M*mY o he (TP } L oye
= — > sup Flz —=z
T { T ) e Blet o
5M*(Ty + 1) ((t s)™ )
< - > - 7
< -0/, Qo
Mzm Z;:n:l hk Tiﬂ
{Frje
1-— Q5 n!
5M*(Ty +1) (t )
d
< 1—0s ) Qo ds
MPm 370 e o T
{ e
1 - Qs

< Qu) -—, n ZO, t e [0,T1]

Note that for any m > n > 1, we have,

sup Ellz™(t) — " (#)|* < Z sup E [+t - "]
te[0,71) r=n t€[0,T1]

f (Qut)

— 0 asn — oo. (9)

IA

This shows that {z™} is Cauchy in By. Then the standard Borel- Cantelli lemma
argument can be used to show that ™ (t) — z(t) uniformly in ¢ on [0, 7T1]. Hence
z(t) is a solutions of (1) in the interval [0, 71]. By Theorem 6 in [13], the existence
of solution of (1) on [0, 7] can be obtained by iteration.

Now, we prove the uniqueness of the solution (2). Let zi,z2 € Br be two
solutions to (1) on some interval (—oo, T]. Then, for t € (—o0, 0], the uniqueness
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is obvious and for 0 <t < T, we have

Ellz:(t) — 22))° < 5([1; AT+ i——”—T”’] L+ MmY hk) El|z1 — as|?
2n—-1 —
t
+5M*(T + l)/ K(E|z1 — z2[|2)ds
0
Thus,
5M*(T+1) [t
Blo-walf < 2D [ (e - s,
1-Quu  Jo
Ci_ =
= — AT ¢ 2T T2 L 4 M h ).
where,  Qu =5([I| — AT + 5T Lo + m; )
Thus, Bihari inequality yields that
sup Ellzy — 2ol = 0,0<t<T
te[0,T) ‘

Thus, z1(t) = x2(t), for all 0 < ¢t < T. Therefore, for all —oo < t < Ty
z1(t) = z2(t) a.s. This achieve the proof. : ‘ 0O
4. Stability

In this section, we mean in this stability is that small changes in the initial
conditions lead to small changes in the solutions over a given finite time interval.

Definition 3. A mild solution z(t) of the system (1) with initial value ¢ is said
to be stable in the mean square if for all € > 0, there exists § > 0 such that

Elz(t) — #(t)|* < € when E||¢ — ¢|*> <6, forallt €[0,T).  (10)
where &(t) is another mild solution of the system (1) with initial value ¢.

Theorem 2. Let z(t) and y(t) be mild solutions of the system (1) with initial val-
ues @1 and @y respectively. Assume the assumptions of Theorem 1 are satisfied,
then the mild solution of the system (1) is stable in the quadratic mean.

Proof. By the assumptions, z(t) and y(t) are two mild solutions of equations (1)
with initial values ¢; and 2 respectively, then for 0 <t < T

2(t) = u(®) = S)([£1(0) = ¢2(0)] + [90, 1) — 9(0,02)] ) = [9(t, 21) — g(t, 1)

—~ / AS(t — s)[g(s,zs) — g(s, ys)|ds + / S(t— 8)[f(s,2:) — f(s5,ys)]ds
0 0

+/S(t—s) (s, zs) — a(s, ys)]dw(s) + Z S(t — ta) [T (x(te)) — Tn(y(ts))].

0 0Lt <t
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So, estimating as before, we get

Ellz(t) - y)IF < 7M1+ = A7"IPLy) Ellor — wof”

_ Ciy -
+7([lIl = A7 + -277;_’11“2 "Ly + M*m ;hk)EHx —y||?

t
LTMA(T + 1) / K(Ellz - yl?)ds,
0

Thus,
TM2(1+ | - AL,
Ellz —yll; < ( o) Elle1 — w2|l?
1-Q12
TM2(T +1) [*
+ 0 [ KBl - uiyis,
1-Qi2 Jo

where, Q12 = 7([|l — A" + 23T Ly + M*m Y-, hu).

Let Ki(u) = WK (u), for K is a concave increasing function from R+
to R+ such that K(0) = 0, K(u) > 0 foru >0 and [, K%S = +00. So, K (u) is
obvious a concave function from R* to R* such that K;(0) =0, K;(u) > K(u),

for 0 < u < 1and [, +%% = 400. So for any € > 0, eléle,sowe
0+ Ki(u) 2

‘T du
have lim = 00. S0, there is a positive constant § < €;, such that
520 /s Kl(u)
€1 du
f& - Ky (u) 2 T. :

From Corollary 1, let
TM?(1+ [[(=A"")*L,)

Up = 1— 01z Elpr — 2|,
ut) = Ellz-yllf, v(t) =1,
when ug < 6 <€, we have
‘T du v du

, T
e > >T = v(s)ds.
Juo Ka(w) T S5 Ka(u) T /0 (5
So, for any t € [0, T}, the estimate u(t) < €; holds. This completes the proof. [

Remark 1. If m = 0 in (1), then the system behave as stochastic partial neutral
functional differential equations with infinite delays. of the form .
{ d(z(t) +g(t,z:)) = [Az(t) + f(t,ze)]dt + a(t, ze)dw(t), 0< t < T,
IL‘(t) = @€ DbBO((-—OO,O],Xn), (11)

by applying Theorem 1 under the hypotheses (H1) — (H3), (H5) the system (11)
guarantees the existence and uniqueness of the mild solution.

Remark 2. The system (11) satisfies the Remark 1. Then by Theorem 2, the
mild solution of the system (11) is stable in the quadratic mean.
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5. An example

We conclude this work with an example of the form

d[u(t, x) + / by, a:)u(tsint,y)dy] = l:aa—;u(t, z) + H(t,u(tsint, x))] dt (12)
0 - :
+ o G(t,u(tsint, z))dp(t), t£t,, 0<t<T,
uth) —u(ty) = (@+b)u(z(ty)), t=t, k=12,...m,
u(t,0) = wu(t,m)=0
u(t,z) = @(t,z), 0<z<m —o0<t<O0.

Let X = L?([0,7]) and Y = R!, the real number o is magnitude of continuous
noise, ((t) is a standard one dimension Brownian motion, ® € D%O ((—00,0], X),
bpy>0fork=1,2,...,mand ) ;b < .

Define A an operator on X by Au = %‘; with the domain

2

D(A) = {u €X ‘u and gg are absolutely continuous, 8—:1:; € X,

u(0) = u(r) = o.}

It is well known that A generates a strongly continuous semigroup S(t) which is
compact, analytic and self adjoint. Moreover, the operator A can be expressed
as

oo
Au = Zn2 < U, Up > Un, U € D(A),
n=1

where u,(¢) = (%)% sin(n¢), n =1,2,..., is the orthonormal set of eigenvectors
of A. Then the operator (-A)% is given by

oo
(—A)2u = Z n < u,u, > uy, on the space

n=1
D[(-A)?] = {ue X;Zﬁ < U, up > Un €eX}.
a n=1

This satisfies ||S(¢)|| < 1, ¢ > 0, and hence is a contraction semigroﬁp. In
particular,
_1 1 % 1
I H= o [ ds@le <1
3 Jo
We assume that the following condition hold:
(¢): The function b is measurable and

//bz(y,w)dyda;<oo.
o Jo |
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(¢3): The function gt-b(y, x) is measurable b(y,0) = b(y, 7) = 0 and let

= ['/OW /07r (%b(y, :c))Qdydx]% < 0.

Assuming that conditions (i) and (ii) are verified, then the problem (12) can be
modeled as the abstract impulsive stochastic partial neutral functional differential
equation (1). Define now

g(t’ .’L't) = /7T b(ya CL')’U/(tS'L?’Lt, y)dy$ f(t, .’Et) = H(t, u(tsmt, IE)),
0
a(t,z¢) = oG(t,u(tsint,x)) and Ip(z(t)) = (1 + br)u(x(tx)) for k =1,2,.

The next results a consequence of Theorem 1 and Theorem 2 respectively.

Proposition 1. Assume that the hypotheses (H1) — (Hs) hold. Then there exists
a unique mild solution u of the system (12) provided

é = max{Ql,Qs} < 1.

is satisfied.

Proposition 2. Assume that the conditions of Proposition 1 hold. Then the
mild solution u of the system (12) is stable in the quadratic mean. :

10.
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