• 제목/요약/키워드: Impulse voltages

검색결과 100건 처리시간 0.026초

불평등전장에서 $SF_6$ 기체의 뇌임펄스 절연파괴특성 (Characteristics of lightning impulse breakdowns in inhomogeneous $SF_6$ gas gap)

  • 이복희;최휘성;오성균;이봉
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1921-1923
    • /
    • 2004
  • V-p characteristics and the discharge luminous characteristics in inhomogeneous $SF_6$ gas gap under the positive and negative lightning impulse voltages are presented. The test gap was composed of the plane-to-plane with a needle-shaped protrusion. The applied voltage and the predischarge current were measured by the electric field sensor and the shunt of 50 ${\Omega}$, respectively. The light emission signals were observed by a photomultiplier tube, and a high-speed camera. In a consequence, the dielectric strengths of $SF_6$ gas gap under positive lightning impulse voltages were independent of the gas pressure. In the presence of the positive polarity, the branches of discharge channel were created and the directions of the discharge paths were random. On the other hands, the discharge paths of the negative polarity were more thicker and brighter.

  • PDF

불평등전장에서 $SF_6$$SF_6/N_2$ 혼합기체의 뇌임펄스 전압에 대한 코로나 방전특성 (Characteristics of lightning impulse corona discharges under non-uniform electric fields in $SF_6$ and $SF_6/N_2$ mixtures)

  • 이복희;오성균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.129-132
    • /
    • 2004
  • This paper presents an experimental study on the prebreakdown characteristics in $SF_6/N_2$ mixtures under non-uniform electric fields when subjected to the positive and negative lightning impulse voltages. $SF_6/N_2$ mixtures have a merit of an environmental aspect and cost reduction, and safty aspects. In order to analyze the prebreakdown processes in $SF_6/N_2$ mixtures stressed by impulse voltages, prebreakdown current and light were observed by a shunt with high sensitivity and a photo-multiplier tube, respectively. Additionally, characteristics of luminous events in flashovers were discussed.

  • PDF

Impulse Breakdown Behaviors of Dry Air as an Alternative Insulation Gas for SF6

  • Li, Feng;Yoo, Yang-Woo;Kim, Dong-Kyu;Lee, Bok-Hee
    • 조명전기설비학회논문지
    • /
    • 제25권3호
    • /
    • pp.24-32
    • /
    • 2011
  • [ $SF_6$ ]gas, which has an excellent dielectric strength and interruption performance, is used in various applications such as gas insulated switchgear (GIS) in substations. However, since $SF_6$ has a high global warming potential (GWP), it is necessary to find an eco-friendly alternative insulation gas. In order to examine the possibility of using alternative insulation gases for $SF_6$ in power distribution system equipment, the dielectric strength and physical phenomena of dry air in a quasi-uniform electric field are investigated experimentally in this paper. As a result, the breakdown voltages for positive polarity are higher than those for negative polarity under impulse voltage applications. The negative 50[%] flashover voltage, $V_{50}$ of dry air under conditions above 0.4[MPa] gas pressure, is higher than 150[kV], that is the basic impulse insulation level of distribution equipment. The $V_{50}$ increases linearly with increasing the gas pressure, regardless of the waveform and polarity of the applied impulse voltages. The voltage-time curves are dependent on the rise time of the impulse voltage and gas pressure. Furthermore, streamer discharge was observed through light emission images by an ICCD camera under impulse voltage applications.

Electrical Properties Associated with Discharge Developments in Water Subjected to Impulse Voltages

  • Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.156-162
    • /
    • 2010
  • This paper describes electrical and optical characteristics of discharge developments in water under inhomogeneous fields caused by impulse voltages. Predischarge current and discharge light images were observed for different water resistivities and applied voltages between the hemispherical water tank and the needle electrode. The electrical parameters characterizing discharge developments are analyzed based on the discharge light images and voltage-current (V-I) curves, and electrical resistances derived by voltage and current waveforms. As a result, when the streamer corona is initiated at the tip of the needle electrode, the transient resistance suddenly drops and V-I curves form a 'loop'. The length of streamer propagation is increased with increasing peak value of the applied voltage, and the streamer corona extension is enlarged with increasing water resistivity. The electrical resistances before streamer corona initiation are rarely changed by different applied voltages. On the other hand, the electrical resistances after streamer corona initiation are found to be inversely proportional to the peak value of the applied voltage, and the decreasing rates for higher water resistivities are much higher than those for lower water resistivities. The time to streamer corona initiation and the time to the second current peak become shorter as the voltage increases. Finally, the calculated resistances after streamer corona initiation are almost the same trace of measured resistances, but they are smaller than the measured values.

Discharge Characteristics in Soils Subjected to Lightning Impulse Voltages

  • Kim, Seung Min;Yoo, Yang-Woo;Lee, Bok-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.446-454
    • /
    • 2016
  • In this paper, we present experimental results of the soil discharge characteristics as a function of moisture content when a 1.2/50-㎲ lightning impulse voltage is applied. For this study, laboratory experiments were carried out based on factors affecting the transient behavior in soils. The electrical breakdown voltages in soils were measured for a 0-6% range of moisture content for sand and a 0 - 4% range of moisture content for gravel. A test cell with semi-spherical electrodes buried face-to-face in the middle of a cylindrical container was used. The distance separating the electrodes is 100 mm. As a result, the time-lag to breakdown in soils decreases as the amplitude of applied voltage increases. The time-lag to initiation of ionization streamer is decreased, with an increase in the moisture content. However, the formative time-lag is rarely changed. The behavior of soil discharges depend not only on the type of soil and its moisture content but also on the amplitude of the impulse voltage. When the test voltage is applied repeatedly, electrical breakdown occurs along different discrete paths, leading radially away from the injected electrode. i.e., the fact that the ionization streamers propagate in different paths from shot to shot was observed.

Study on the Transfer Functions for Detecting Windings Displacement of Power Transformers with Impulse Method

  • Shon, Chae-Hwa;Yi, Sang-Hwa;Lee, Heun-Jin;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.876-883
    • /
    • 2012
  • The paper investigates three types of transfer function methods for detecting displacements of winding in a model transformer. To acquire these transfer functions, the measuring method of input voltage, current and its response is used in impulse method. The applied impulse voltages had three rising times, which were short rising time (less than 0.6 ${\mu}s$), medium rising time (about 0.8 ${\mu}s$) and long rising time (about 1 ${\mu}s$) in front waves. Every 10 measurements of voltage and current waves were averaged from 50 measurements of voltage and current waves. These transfer functions were tested in normal, 24mm elevated and 48mm elevated windings conditions and were analyzed with correlation coefficients and spectrum deviations. In the analysis, the results depend on the types of transfer functions and the rising times of input voltages.

침상 접지봉의 임펄스접지임피던스에 미치는 지중방전의 영향 (Effects of Soil Discharges on the Impulsive Ground Impedance of Ground Rod with Needles)

  • 유양우;조성철;이복희
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.98-105
    • /
    • 2014
  • Soil discharges near the ground rod play an important role to reduce the ground potential rise and the ground impedance and to help the fault current to spread into the earth. This paper presents the effects of soil discharges on the transient and conventional ground impedances when the lightning impulse voltage was applied to a ground rod with radial needles. The current-voltage (I-V)curves and transient ground impedance curves were calculated based on the measured current and potential traces. Soil discharge behaviors related to I-V curves and transient ground impedance curves were analyzed as a function of the magnitude of lightning impulse voltages. As a result, the soil discharges occurred near the ground electrode contribute to the reduction of conventional ground impedance and limits the ground potential rise effectively under lightning impulse voltages.

Evaluation on the Lightning Breakdown Voltages of Palm Oil and Coconut Oil under Non-Uniform Field at Small Gap Distances

  • Thien, Yee Von;Azis, Norhafiz;Jasni, Jasronita;Kadir, Mohd Zainal Abidin Ab;Yunus, Robiah;Ishak, Mohd Taufiq;Yaakub, Zaini
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.184-191
    • /
    • 2016
  • In recent years, there are a number of studies that have been carried out to explore the alternative for Mineral Oil (MO) as dielectric insulating fluid in transformers due to the increasing tight regulation on safety and environment. Vegetable oils have been identified as suitable candidate since it is biodegradable, non-toxic and high flash/fire points which ensure more in-service safety. Among the types of vegetable oils considered for transformers application are Palm Oil (PO) and Coconut Oil (CO). This paper presents an experimental study on the lightning breakdown voltages of PO and CO under non-uniform electric field based on needle-sphere electrodes configuration at 3 small gap distances. The type of PO used in this study is Refined Bleached and Deodorized Palm Oil (RBDPO) Olein. The main focus of this study is to examine the lightning breakdown performance of RBDPO and CO under different test conditions and assess its suitability as dielectric insulating fluid in transformers. The effect of voltage polarities (positive and negative) and testing methods (rising-voltage, up-and-down and multiple-voltage) were investigated. The data obtained from all tests were analysed by Weibull distribution in order to determine the withstand voltages for each type of oils. It was found that the breakdown voltages of RBDPO and CO are comparable with MO under positive lightning impulse. Under negative lightning impulse, the breakdown voltage of MO is slightly higher than RBDPO and CO. There is no significant effect of testing methods and voltage polarities on lightning breakdown voltages of RBDPO and CO. Based on the statistical analysis, it is found that the breakdown voltages of RBDPO and CO at 1% probability are slightly lower than MO.

직류+60[Hz] 교류 중첩전압에 대한 ZnO 피뢰기 소자의 전기적 특성 (Electrical Characteristics of ZnO Surge Arrester Elements Subjected to the Mixed DC and 60[Hz] AC Voltages)

  • 이복희;양순만
    • 조명전기설비학회논문지
    • /
    • 제26권4호
    • /
    • pp.41-47
    • /
    • 2012
  • This paper deals with the electrical characteristics related to power loss, equivalent resistance, and leakage currents flowing through new and deteriorated zinc oxide(ZnO) arrester elements subjected to the mixed DC and 60[Hz] AC voltages. The test specimens were deteriorated by 8/20[${\mu}s$] impulse current of 2.5[kA]. The leakage current-applied voltage($I-V$) characteristic curves of ZnO surge arrester elements were measured as a parameter of the ratio of the peak of 60[Hz] AC voltage to the peak of total voltage. As a consequence of test results, in case of the same applied voltage, the leakage currents flowing through the deteriorated ZnO arrester elements were higher than those flowing through the new ZnO surge arrester elements. The cross-over phenomenon in $I-V$ curves of ZnO surge arrester elements measured as a parameter of the mixed ratio of DC and AC voltages was observed at the low current domain. The effect of DC voltage on the leakage current flowing through ZnO surge arrester elements is pronounced at the same magnitude of test voltages. In addition, the larger the applied number of 8/20[${\mu}s$] impulse current of 2.5[kA] is, the greater the power loss is, in particular, the more severe the power loss increases at higher applied voltages.

전철 탑재 피뢰기용 MOV 소자 임펄스 특성 (Impulse Characteristics of MOV Elements for Railroad Vehicle Arrester)

  • 한세원;조한구;이형구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1529-1531
    • /
    • 1999
  • The main functions of AC railroad vehicles arresters is to protect the main transformer from lightening impulse or switching impulse surge, then the MOV(metal oxide varistor) elements rated of 10kA is applied. The residual voltage and surge energy absorption are important parameters in designing arrester, these must be carefully decided with considering protecting level of impulse environment of system. The purpose of this study is to discuss the residual voltages and the energy absorption capability by impulse currents on MOV elements for railroad vehicles, and to introduce design factors which act as optimal protecting condition against impulse currents.

  • PDF