• Title/Summary/Keyword: Impulse Current

Search Result 369, Processing Time 0.033 seconds

Transient impedance characteristics according to the injection position of deep-driven ground rods (심매설 접지전극의 전류인가위치에 따른 과도접지임피던스 특성)

  • Lee, Bok-Hee;Li, Feng;Lee, Su-Bong;Lee, Song-Zhu;Jeon, Byung-Wook;Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.297-300
    • /
    • 2008
  • This paper presents the behaviors of transient and conventional grounding impedances of a deep-driven ground rods associated with the injection point of lightning impulse currents. The transient impedance of deep-driven ground rods under lightning impulse currents were higher than the static ground resistance. The transient grounding impedances strongly depend on the injection point and size of grounding electrodes and the rising time of impulse current. Reduction of ground system inductance is an important factor to lightning surge protection.

  • PDF

A Study on the Measurements of Parameters Affecting the Breakdown Mechanism of a Large Air Spacing (이격거리가 큰 전극의 공기 절연파괴에 영향을 미치는 인자측정에 관한연구)

  • Cho, Yun-Ok;Choi, Young-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.756-760
    • /
    • 1988
  • The paper presents the measurement results on the parameters affecting the breakdown mechanism of a large air spacing under switching impulse voltages. Measured parameters are the velocities of leader channels, predischarge currents, electric charges injected into the rod-plane air gap and electric field intensities on the plane. For the 3m air gap under switching impulse voltages, the velocities of leader channel have been measured to be of 1cm/${\mu}s$ - 5cm/${\mu}s$, electric field intensity of 2kv/cm, predischarge current of 1.2A - 1.6A, the charges injected into the air gap of 11 - 40 ${\mu}$C for 400-887kV impulse voltages.

  • PDF

Effect of Er2O3 Content on Nonlinear Properties and Impulse Clamping Characteristics of Pr/Co/Cr/Al Co-doped Zinc Oxide Ceramics

  • Nahm, Choon-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.612-617
    • /
    • 2014
  • The microstructure, nonlinear properties, and impulse clamping characteristics of Pr/Co/Cr/Al co-doped zinc oxide ceramics were investigated with various contents of $Er_2O_3$. Increasing $Er_2O_3$ content increased the density of the sintered pellets from 5.69 to $5.83g/cm^3$, and decreased the average grain size from 10.6 to $6.5{\mu}m$. With increased $Er_2O_3$ content, the breakdown field increased from 2318 to 4205 V/cm, and the nonlinear coefficient increased from 19.4 to 40.2. The clamp characteristics were improved with the increase of the content of $Er_2O_3$. The varistors doped with 2.0 mol% exhibited the best clamp characteristics, in which the clamp voltage ratio was 1.40-1.73 at 1-50 A in an impulse current.

Characteristics of lightning impulse corona discharges under non-uniform electric fields in $SF_6$ and $SF_6/N_2$ mixtures (불평등전장에서 $SF_6$$SF_6/N_2$ 혼합기체의 뇌임펄스 전압에 대한 코로나 방전특성)

  • Lee, B.H.;Oh, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.129-132
    • /
    • 2004
  • This paper presents an experimental study on the prebreakdown characteristics in $SF_6/N_2$ mixtures under non-uniform electric fields when subjected to the positive and negative lightning impulse voltages. $SF_6/N_2$ mixtures have a merit of an environmental aspect and cost reduction, and safty aspects. In order to analyze the prebreakdown processes in $SF_6/N_2$ mixtures stressed by impulse voltages, prebreakdown current and light were observed by a shunt with high sensitivity and a photo-multiplier tube, respectively. Additionally, characteristics of luminous events in flashovers were discussed.

  • PDF

Transient Ground Impedance of Small-sized Ground Electrode considering Underground Discharge in Frozen Soil (동결 토양에서 지중방전을 고려한 소규모 전극의 과도접지임피던스 특성)

  • Lee, Tae-Hyung;Cho, Sung-Chul;Eom, Ju-Hong;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.324-327
    • /
    • 2009
  • This paper presents the transient impedance in a discharge region when high voltage lightning impulse is applied to small-sized ground electrodes in frozen soil. For a realistic analysis of ionization characteristics near the ground electrode in the soil, ground rod installed outdoors and high voltage impulse voltage generator were used. From the analysis of response voltage and current flowing ground electrode to earth, it was verified that the ionization near the ground electrode contributes to reduction of ground impedance and limits the ground potential rise effectively under high impulse voltage.

  • PDF

Transient impedance characteristics of counterpoise according to the soil structures (대지구조에 따른 매설지선의 과도접지임피던스 특성)

  • Lee, Bok-Hee;Li, Feng;Jung, Dong-Cheol;Kim, Ki-Bok;Cho, Sung-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.311-314
    • /
    • 2009
  • This paper presents the characteristics of grounding impedance of counterpoises buried at various soil structures. Grounding impedance measurements were made by the Fall-of-Potential method. The experiments were carried out in 50 m counterpoise of 25 $mm^2$ buried at a depth of 0.5 m. The test current was injected by the impulse generator having the front time of $1{\sim}60{\mu}s$. As a result, the soil structures greatly influences on the grounding impedance characteristics of counterpoise. The transient grounding impedances strongly depend on the injection mint and the front time of impulse current.

  • PDF

A Study on Analysis of Impulse Track Circuit using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 임펄스 궤도회로의 계통분석 연구)

  • Park, Ki-Bum;Lee, Tae-Hoon;Ryu, Young-Tae;Jeon, Yong-Joo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.433-441
    • /
    • 2009
  • We have studied a weird phenomenon on the High Voltage Impulse Track Circuit (HVITC). The biggest problem is that can not recognize the fault states, despite the fact the rail is broken. This study has shown that current HVITC systems can be operated even an ill-contact state of impedance bond lead wire. This study was carried out using various methods, such as measurements using an oscilloscope with voltage and current probes, simulations using PSCAD/EMTDC software tool, and analysis of measured data. Especially, we have simulated the fault state through bypass circuits using PSCAD/EMTDC software tool. We made a model of track circuit and simulated various types of fault states.

  • PDF

Electrical Properties Low-Density Polyethylene by use of Metallocene Catalyst (메타로센 촉매를 이용한 저밀도 폴리에틸렌의 전기적 특성)

  • ;Tatsuo Mori;Teruyoshi Mizutani
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.123-127
    • /
    • 2000
  • In order to investigate the influence of manufacturing process on the electrical properties, we used two kinds of low density polyethylene prepared using metallocene catalyst (mL), linear low density polyethylene prepared using Ziegler catalyst (LL) and low density polyethylene by high pressure process (LD). mL has the narrowest composition and molecular weight distributions. We measured the dc and impulse breakdown strengths and current densities at 3$0^{\circ}C$, 6$0^{\circ}C$ and 9$0^{\circ}C$. mL had a higher breakdown strength and a lower high-field current than LD and LL. These results were discussed from the point of manufacturing processes.

  • PDF

Characterization of Surface at Ti Oxide Films Converted by Anodic Spark Discharge (양극산화 불꽃 방전에 의한 Ti 산화피막의 표면특성)

  • Song, Jae-Joo;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.545-546
    • /
    • 2006
  • This study was performed to investigate the surface properties of electrochemically oxidized pure titanium by anodic spark discharging method. Commercially pure titanium plates of $10{\times}20{\times}1[mm]$ in dimensions were polished sequentially emery paper. Anodizing was performed at current density of $76.2\;[mA/cm^2]$, application voltage of 290, 350, 400 [V] using a regulated DC power supply, which allowed automatic transition constant current when a preset maximum voltage has been reached. The Ti surface oxided films was characterized by scanning electron microscope(SEM). The precipitation of HA(Hydroxyapatite) crystals on anodized surface was greatly accelerated by hydrothermal treatment. The concentrations of DL-$\alpha$-Glycerolphosphate Magnesiurn(DL-$\alpha$-GP-Mg) salt and Ca acetate in an electrolyte was highly affected the precipitation of HA crystals converted by Ti Anodized oxide films by Shape of Impulse Voltage.

  • PDF

An Analysis of the Ground Surface Potential Rise and Hazardous Voltages Caused by Impulse Currents (임펄스전류에 의한 대지표면전위상승 및 위험전압의 분석)

  • Lee, Bok-Hee;Lee, Kyu-Sun;Choi, Jong-Hyuk;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.117-123
    • /
    • 2011
  • Lightning and switching surges propagating through the grounding conductors lead to transient overvoltages, and electronic circuits in information technology systems are very susceptible to damage or malfunction from the electrical surges. Surge damages or malfunctions of electrical and electronic equipment may be caused by potential rises. To solve these problems, it is very important to evaluate the ground surface potential rises and hazardous voltages such as touch and step voltages at or near the grounding systems energized by electrical surges. In this paper, the performance of grounding systems against the surge current containing high frequency components on the basis of the actual-sized tests is presented. The ground surface potential rises and hazardous voltages depending on impulse currents for vertical or horizontal grounding electrodes are measured and analyzed. Also the touch and step voltages caused by the impulse currents are investigated. As a result, the ground surface potential rises, the touch and step voltages near the grounding electrodes are raised and the conventional grounding impedances are increased as the front time of the injected impulse currents is getting faster.