• Title/Summary/Keyword: Improving Workability

Search Result 59, Processing Time 0.026 seconds

A Study on Rheology Properties of High Performance Wet-mix Shotcrete (고성능 습식 숏크리트의 레올로지에 관한 기초연구)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Jin-Woung;Kim, Yong-Bin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.25-32
    • /
    • 2010
  • High performance shotcrete has been recently researched partly as a result of high consensus on high strength and durability. However, they are very initial step compared from the advanced countries. For instance, they has been mainly on high strength or durability without any consideration on pumpability and shootability which are very crucial on workability. The purpose of this dissertation was to make a high performance wet-mix shotcrete (high workability) which would solve the general problems of wet-mix process in Korea. For this, the main experimental variables were selected to be silica fume(0.0, 4.5, 9%), air entrained agent(0.0, 0.005%). Rheology with IBB rheometer was measured for evaluating pumpability and shootability as well as pump pressure, rebound rate and build-up thickness. The conclusions from a series of experiments were as follow: The results of analyzing the effects of AE agent and silica fume on rheology indicated that AE agent reduced both of flow resistance(G) and torque viscosity(H) and silica fume increased flow resistance (G) and reduced torque viscosity(H). An increase in the value of torque viscosity(H) produces an increase in the requried pumping pressure. These result indicated that the reduction of torque would work better at improving pumpability. And an increase flow resistance(G) improved shootability(increase build-up thickness and reduce rebound).

The Strength and Length Change Properties of Recycled Aggregate Concrete(RAC) by Compressive Strength Levels (압축강도 수준별 순환골재 콘크리트의 강도와 길이변화 특성)

  • Lee, Bong-Chun;Lee, Jun;Cho, Young-Keun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.307-312
    • /
    • 2015
  • This paper addresses mechanical properties and length change performance of the recycled aggregate concretes(RAC) in which natural coarse was replaced by recycled coarse aggregate(RCA) by compressive strength levels(20, 35, 50 MPa). A total of 9 RAC were produced and classified into three series, each of which included three mixes designed with three compressive strength levels of 20 MPa, 35 MPa and 50 MPa and three RCA replacement ratios of 0, 50 and 100%. Physical/Mechanical properties of RAC were tested for slump test, compressive strength, and length change. The test results indicated that the workability of RC could be improved or same by RCA replacement ratios, when compared with that containing no RCA. This is probably because of the RCA shape improving the workability of RAC. Also, the test results showed that the compressive strength was decreased by 9~10% as the RCA replacement ratios increase. However, the length change ratio by the RCA replacement ratios increased regardless of compressive strength levels. At 20 MPa level, the length change ratio was 8~40% which was much higher than that of 4~17% at both 35 and 50 MPa levels. Therefore, it was considered that such admixture addition preventing dry shrinkage is required in order to improve the properties of the RAC at 20 MPa level.

Chloride Diffusivity of Concrete using Recycled Aggregate by Strength Levels (강도수준별 순환골재 콘크리트의 염화물 확산특성)

  • Lee, Jun;Lee, Bong-Chun;Cho, Young-Keun;Jung, Sang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.102-109
    • /
    • 2016
  • This paper presents mechanical properties and chloride diffusivity of the recycled aggregate concretes(RAC) in which natural coarse aggregate was replaced by recycled coarse aggregate(RCA) by compressive strength levels(20, 35, 50 MPa). A total of 9 RAC were produced and classified into three series, each of which included three mixes designed with three compressive strength levels of 20 MPa, 35 MPa and 50 MPa and three RCA replacement ratios of 0, 50 and 100%. Engineering properties of RAC were tested for slump test, air content, compressive strength, chloride penetration depth and chloride diffusion coefficient. The test results indicated that the workability of RAC could be improved or same by RCA replacement ratios, when compared with that containing no RCA. This is probably because of the RCA shape improving the workability of RAC. Also, the test results showed that the compressive strength was decreased by 9~10% as the RCA replacement ratios increase. Furthermore, the result indicated that the measured chloride diffusion coefficient increases by 144% with the increase of the RCA replacement. In the case of the concrete having low level compressive strength, the increase of chloride diffusion coefficient tends to be higher when using the RCA. However, the trend of chloride diffusion coefficient in high level compressive strength concrete is similar to that obtained in general concrete. This is because that the effect of the RCA replacement could be a decrease with increase of compressive strength. Therefore, an advance on the admixture application and mix ratio control are required to improve the chloride resistivity when using the recycled aggregate in large scale.

A Study on Efficient Deconstruction of Supporters with Response Ratio (응답비를 고려한 효율적인 버팀보 해체방안에 관한연구)

  • Choi, Jung-Youl;Park, Sang-Wook;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.469-475
    • /
    • 2022
  • As the recent structure construction is constructed as a large-scale and deep underground excavation in close proximity to the building, the installation of retaining wall and supporters (Struts) has become complicated, and the number of supporters to avoid interference of the structural slab has increased. This construction process becomes a factor that causes an increase in construction joints of a structure, leakage and an increase in wall cracks. In addition, this reduced the durability and workability of the structure and led to an increase in the construction period. This study planned to dismantle the two struts simultaneously as a plan to reduce the construction joints, and corrected the earth pressure by assuming the reaction force value by the initial earth pressure and the measured data as the response ratio. After recalculating the corrected earth pressure through the iterative trial method, it was verified by numerical analysis that simultaneous disassembly of the two struts was possible. As a result of numerical analysis applying the final corrected earth pressure, the measured value for the design reaction force was found to be up to 197%. It was analyzed that this was due to the effect of grouting on the ground and some underestimation of the ground characteristics during design. Based on the result of calculating the corrected earth pressure in consideration of the response ratio performed in this study, it was proved analytically that the improvement of the brace dismantling process is possible. In addition, it was considered that the overall construction period could be shortened by reducing cracks due to leakage and improving workability by reducing construction joints. However, to apply the proposed method of this study, it is judged that sufficient estimations are necessary as there are differences in ground conditions, temporary facilities, and reinforcement methods for each site.

An Experimental Study on the Mechanical Properties of Ductile Outline Form and Fire Resistance of High Strength RC Column (고인성 외곽 거푸집의 역학성능 및 이를 활용한 고강도 RC기둥의 내화성능에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Kim, Jae-Hwan;Kim, Yong-Ro;Kim, Wook-Jong;Kwon, Young-Jin;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.199-203
    • /
    • 2008
  • With recent trend in domestic and global market requiring architectures' conversion into skyscrapers seasoned with the features of landmarks, structural problems in relation with explosive spatting during fire emergencies are arising as controversial issues. Accordingly, many productive researches have been made in relation to the reinforcement techniques for improving fire resistance and the number of applications in the field is gradually increasing. In this study, a ductile outline form using ECC (Engineered Cementations Composites) was made with improvements on the structure and fire resistance to examine its applicability. Also, currently in Japan, the number of studies and applications is increasing focusing on reduction of construction time and improvement of workability with application of Half-PCa method. However, using such method of construction, large structural members decrease the utilization of space and architecture-wise, there is a disadvantage of the weight increase. Therefore, in such context, it would be worth reducing the weight of the structural members by reducing the size using ECC. In addition, its excellent pseudo strain-hardening due to fiber may have great effects on seismic designs. In the mean time, this study planned 3 equal conditions for mix water, PVA fiber and additives excluding binder and refractory to evaluate the mechanical properties of resistance against pressure and internal force. Finally, an evaluation was executed on the fire resistance of the newly made ductile outline form. As a result, from ECC-I to ECC-III, all showed excellent mechanical properties due to pseudo strain-hardening and in the fire resistance test conducted with ISO 834 heating curve, most of them tended to be in the range of the reference temperature (538℃-180min), so there was no occurrence of any explosive spatting.

  • PDF

Fundamental Properties of Alumina Cement Mortar by Insulation Curing Method under Low Temperature (저온환경에서 알루미나시멘트를 사용한 모르타르의 단열양생에 따른 기초물성 평가)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.419-427
    • /
    • 2017
  • In order to examine the possibility of practical use of aluminate cement concrete at low-temperature environment with insulation method, an experimental studies on flowability, setting time, freezing temperature, size variation and compressive strength of the mortar at low-temperature were conducted. Compressive strength was increased in use of CSA, aluminate cement with gypsum. Workability and physical properties were improved by using aluminate cement and gypsum. In addition, freezing resistance and physical properties were improved by applying the insulation curing method. Especially, when alumina cement and gypsum were used together, the insulation curing method was more effective in improving the compressive strength.

Driveability Analysis of Non Welding Composite Pile (무용접 복합말뚝의 항타관입성 분석에 관한 연구)

  • Shin, Yun-Sup;Kim, Nam-Ho;Boo, Kyo-Tag;Lee, Jong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.729-737
    • /
    • 2008
  • As increasing demand on marine structures and skyscrapers, a deep shaft pile foundation is more to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in civil or architectural construction, steel pile is largely used with its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is about the Composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile simultaneously while preserving the advantage of steel pile that large resistance to horizontal force and bending moment. A Non Welding connection method is applied to this composite pile and this method could reduce the cost and period of construction and could increase the quality of construction by solving the problem of current welding method and by improving the workability of pile connection. In this study, characteristics of driveability of non welding composite pile is analyzed prior to main project while the purpose of main project is proving the applicability of Non Welding Composite Pile by conducting various kind of loading test to analyze the characteristics behaviour of Non Welding Composit Pile and by verifying stability of non welding connection pile.

  • PDF

Experimental Research Application to each Types of Insulation Materials in Rural Houses (농촌주택의 단열 재료별 현장 적용을 위한 실험 연구)

  • Kwon, Soon-Chan;Kim, Eun-Ja
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.19 no.4
    • /
    • pp.57-65
    • /
    • 2017
  • Life quality in farming areas is declining these days on account of decrease in population with the outflow of young generations, advent of aging society, and also lack of social and physical infrastructure. To reverse this, the central and local governments have been devising policies in many ways; however, the vulnerable class in farming area suffering from financial difficulty is not supported with that properly. The results of applying insulation materials applicable to rural houses, EPS, e-board, and glass wool, actually to rural houses are summed as follows. EPS is the most inexpensive among the three installations in terms of material cost and expenses. The indoor and outdoor temperature difference increased from $0.9^{\circ}C$ to $2.5^{\circ}C$, and the temperature change reduced as $0.04^{\circ}C$. With e-board, the indoor and outdoor temperature difference increased from $3.3^{\circ}C$ to $7.5^{\circ}C$; however, the temperature change increased as $0.09^{\circ}C$. Unlike the other two methods, glass wool requires the additional installation of wooden frames. The material cost is highest, and the indoor and outdoor temperature difference increased from $1.1^{\circ}C$ to $8.0^{\circ}C$, and the temperature change reduced as $0.01^{\circ}C$. According to the results of measuring temperature, glass wool's temperature difference is measured to be the highest, but temperature change is found to be the most effective in EPS. Among the three insulation methods, EPS is the most economically advantageous as the material supply is easy and the cost is low. The material is easily processible, so ordinary town residents can install it easily, and it is effective at improving insulation performance, too. But this method cannot be applied when the house has walls that are not even. Also, as the insulator is thick, after the installation, the living space may be narrower as a result.

Analysis of CO2 Emission and Economic of Rural Roads Concrete Pavement Using Air Cooled Slag Aggregate (괴재슬래그 골재를 적용한 농촌도로 포장 콘크리트의 CO2 배출량 및 경제성 분석)

  • Ahn, Byong Hwan;Kim, Hwang-Hee;Lee, Jae-Young;Cha, Sang-Sun;Lee, Goen Hee;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.25-34
    • /
    • 2022
  • Recently, as a study to air cooled slag, which is an industrial by-product, research is being proceed to use it as a material for concrete. In this study, the workability, air content, compressive strength, CO2 emission and economic feasibility of concrete were analyzed when air cooled slag, an industrial by-product, was applied as aggregate for rural road pavement concrete. As a result of the analysis, both the slump and air contents test results of concrete using the air cooled slag aggregate satisfied the target values, and the compressive strength was increased when the air cooled slag aggregate was used compared to when the natural aggregate was applied. On the other hand, the largest amount of CO2 emission by raw material was found in aggregate. The carbon emission of rural road pavement concrete using air cooled slag aggregate increased when the Korean LCI DB was applied compared to when natural and crushed aggregates were applied, and the emission decreased when the German LCI DB was applied. This results are due to differences in the viewpoints of industrial by-products. However, considering the recycling of waste from the environmental aspect, it is necessary to simultaneously review the CO2 emission and recycling aspects in the future. Also, the application of air cooled slag aggregate had the effect of improving the economic efficiency of rural road pavement concrete about 18.75%.

Development of an ECC(Engineered Cementitious Composite) Designed with Ground Granulated Blast Furnace Slag (고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발)

  • Kim, Yun-Yong;Kim, Jeong-Su;Ha, Gee-Joo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.21-28
    • /
    • 2006
  • This paper presents both experimental and analytical studies for the development of an ECC(Engineered Cementitious Composites) using ground granulated blast furnace slag(slag). This material has been focused on achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, micromechanics was adopted to properly select optimized range of the composition based on steady-state cracking theory and experimental studies on matrix, and interfacial properties. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties of the fiber in a matrix and the fracture toughness of mortar matrix. The addition of the slag resulted in slight increases in the frictional bond strength and the fracture toughness. Subsequent direct tensile tests demonstrate that the fiber reinforced mortar exhibited high ductile uniaxial tension behavior with a maximum strain capacity of 3.6%. Both ductility and tensile strength(~5.3 MPa) of the composite produced with slag were measured to be significantly higher than those of the composite without slag. The slag particles contribute to improving matrix strength and fiber dispersion, which is incorporated with enhanced workability attributed to the oxidized grain surface. This result suggests that, within the limited slag dosage employed in the present study, the contribution of slag particles to the workability overwhelms the side-effect of decreased potential of saturated multiple cracking.