• Title/Summary/Keyword: Improvement of prediction performance

Search Result 440, Processing Time 0.033 seconds

Adaptive illumination change compensation method for multi-view video coding (다시점 비디오 부호화를 위한 적응적인 조명변화 보상 방법)

  • Hur, Jae-Ho;Cho, Suk-Hee;Hur, Nam-Ho;Kim, Jin-Woong;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.407-419
    • /
    • 2006
  • In this paper, an adaptive illumination change compensation method is proposed for multi-view video coding. In multi-view video, an illumination change can occur due to physically imperfect camera calibration, each different camera position and direction, and so on. These characteristics can cause a performance decrease in the multi-view video coding that uses an inter-view prediction by referring to the pictures obtained from the neighboring views. By using the proposed method, a compression ratio of the proposed method in the multi-view video coding is increased, and finally $0.1{\sim}0.6dB$ PSNR(Peak Signal-to-Noise Ratio) improvement was obtained compared with the case of not using the proposed method.

Development of Reservoir Operation Model using Simulation Technique in Flood Season(II) (모의기법에 의한 홍수기 저수지 운영 모형 개발(II))

  • Sing, Yong-Lo;Maeng, Sung-Jin;Ko, Ick-Hwan;Lee, Hwan-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.797-805
    • /
    • 2002
  • The EV ROM, a joint reservoir operation model for flood control that accounts for the downstream flow condition, has been introduced in the preceding article (Shin et al, 2000). A joint reservoir operation model computer program for the Geum river basin, developed by FORTRAN Power Station 4.0 using the EV ROM, is hereby presented. Three case studies of flood control by joint operation of the Yongdam and Daechung Multipurpose Dams in the Geum river basin revealed that the performance of the EV ROM was superior to the existing Rigid ROM and Technical ROM. This is because the EV ROM can account for the downstream flow condition as well as the upstream inflow and the reservoir water level. In order to apply for various floods events in the future, consistent improvement of the developed EV ROM and efforts for more accurate rainfall prediction are required.

Application of single-step genomic evaluation using social genetic effect model for growth in pig

  • Hong, Joon Ki;Kim, Young Sin;Cho, Kyu Ho;Lee, Deuk Hwan;Min, Ye Jin;Cho, Eun Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1836-1843
    • /
    • 2019
  • Objective: Social genetic effects (SGE) are an important genetic component for growth, group productivity, and welfare in pigs. The present study was conducted to evaluate i) the feasibility of the single-step genomic best linear unbiased prediction (ssGBLUP) approach with the inclusion of SGE in the model in pigs, and ii) the changes in the contribution of heritable SGE to the phenotypic variance with different scaling ${\omega}$ constants for genomic relationships. Methods: The dataset included performance tested growth rate records (average daily gain) from 13,166 and 21,762 pigs Landrace (LR) and Yorkshire (YS), respectively. A total of 1,041 (LR) and 964 (YS) pigs were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel. With the BLUPF90 software package, genetic parameters were estimated using a modified animal model for competitive traits. Giving a fixed weight to pedigree relationships (${\tau}:1$), several weights (${\omega}_{xx}$, 0.1 to 1.0; with a 0.1 interval) were scaled with the genomic relationship for best model fit with Akaike information criterion (AIC). Results: The genetic variances and total heritability estimates ($T^2$) were mostly higher with ssGBLUP than in the pedigree-based analysis. The model AIC value increased with any level of ${\omega}$ other than 0.6 and 0.5 in LR and YS, respectively, indicating the worse fit of those models. The theoretical accuracies of direct and social breeding value were increased by decreasing ${\omega}$ in both breeds, indicating the better accuracy of ${\omega}_{0.1}$ models. Therefore, the optimal values of ${\omega}$ to minimize AIC and to increase theoretical accuracy were 0.6 in LR and 0.5 in YS. Conclusion: In conclusion, single-step ssGBLUP model fitting SGE showed significant improvement in accuracy compared with the pedigree-based analysis method; therefore, it could be implemented in a pig population for genomic selection based on SGE, especially in South Korean populations, with appropriate further adjustment of tuning parameters for relationship matrices.

Prediction Model of Flexural Properties of LEFC using Foaming Agent (기포제 적용 빛 감성 친화형 콘크리트의 휨 특성 예측 모델)

  • Kim, Byoung-Il;Seo, Seung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • Concrete, which is the most widely used building material in modern times, has been improved not only in strength but also in structural performance such as increase in toughness and ductility, weight reduction, and improvement in quality of human life. Due to the surge in demand for the building, there is a tendency to be used variously from architectural panel and architecture to interior accessories. In Korea, a light-transmitting concrete, LEFC(Light Emotion Friendly Concrete), that insert plastic rods to stimulate emotional sensation through the combination of light and concrete has developed. In previous research, it was confirmed that the use of a synthetic foam agent rather than an animal foam agent did not cause a fogging phenomenon. In this study, lightweight by applying foaming agent to LEFC and two types of fiber (Nylon Fiber, Polyvinyl Alcohol) were compared to achieve to investigate the fiber to be applied in future. An equation that can predict the loss and adhesion reduction of the concrete section according to the diameter of the rod (5mm, 10mm) and the interval (10mm, 15mm, 20mm) was proposed.

The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological Mean Bias Characteristics (기상청 기후예측시스템(GloSea6) - Part 2: 기후모의 평균 오차 특성 분석)

  • Hyun, Yu-Kyung;Lee, Johan;Shin, Beomcheol;Choi, Yuna;Kim, Ji-Yeong;Lee, Sang-Min;Ji, Hee-Sook;Boo, Kyung-On;Lim, Somin;Kim, Hyeri;Ryu, Young;Park, Yeon-Hee;Park, Hyeong-Sik;Choo, Sung-Ho;Hyun, Seung-Hwon;Hwang, Seung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.87-101
    • /
    • 2022
  • In this paper, the performance improvement for the new KMA's Climate Prediction System (GloSea6), which has been built and tested in 2021, is presented by assessing the bias distribution of basic variables from 24 years of GloSea6 hindcasts. Along with the upgrade from GloSea5 to GloSea6, the performance of GloSea6 can be regarded as notable in many respects: improvements in (i) negative bias of geopotential height over the tropical and mid-latitude troposphere and over polar stratosphere in boreal summer; (ii) cold bias of tropospheric temperature; (iii) underestimation of mid-latitude jets; (iv) dry bias in the lower troposphere; (v) cold tongue bias in the equatorial SST and the warm bias of Southern Ocean, suggesting the potential of improvements to the major climate variability in GloSea6. The warm surface temperature in the northern hemisphere continent in summer is eliminated by using CDF-matched soil-moisture initials. However, the cold bias in high latitude snow-covered area in winter still needs to be improved in the future. The intensification of the westerly winds of the summer Asian monsoon and the weakening of the northwest Pacific high, which are considered to be major errors in the GloSea system, had not been significantly improved. However, both the use of increased number of ensembles and the initial conditions at the closest initial dates reveals possibility to improve these biases. It is also noted that the effect of ensemble expansion mainly contributes to the improvement of annual variability over high latitudes and polar regions.

Cox Model Improvement Using Residual Blocks in Neural Networks: A Study on the Predictive Model of Cervical Cancer Mortality (신경망 내 잔여 블록을 활용한 콕스 모델 개선: 자궁경부암 사망률 예측모형 연구)

  • Nang Kyeong Lee;Joo Young Kim;Ji Soo Tak;Hyeong Rok Lee;Hyun Ji Jeon;Jee Myung Yang;Seung Won Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.260-268
    • /
    • 2024
  • Cervical cancer is the fourth most common cancer in women worldwide, and more than 604,000 new cases were reported in 2020 alone, resulting in approximately 341,831 deaths. The Cox regression model is a major model widely adopted in cancer research, but considering the existence of nonlinear associations, it faces limitations due to linear assumptions. To address this problem, this paper proposes ResSurvNet, a new model that improves the accuracy of cervical cancer mortality prediction using ResNet's residual learning framework. This model showed accuracy that outperforms the DNN, CPH, CoxLasso, Cox Gradient Boost, and RSF models compared in this study. As this model showed accuracy that outperformed the DNN, CPH, CoxLasso, Cox Gradient Boost, and RSF models compared in this study, this excellent predictive performance demonstrates great value in early diagnosis and treatment strategy establishment in the management of cervical cancer patients and represents significant progress in the field of survival analysis.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

The Sensitivity Analyses of Initial Condition and Data Assimilation for a Fog Event using the Mesoscale Meteorological Model (중규모 기상 모델을 이용한 안개 사례의 초기장 및 자료동화 민감도 분석)

  • Kang, Misun;Lim, Yun-Kyu;Cho, Changbum;Kim, Kyu Rang;Park, Jun Sang;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.567-579
    • /
    • 2015
  • The accurate simulation of micro-scale weather phenomena such as fog using the mesoscale meteorological models is a very complex task. Especially, the uncertainty arisen from initial input data of the numerical models has a decisive effect on the accuracy of numerical models. The data assimilation is required to reduce the uncertainty of initial input data. In this study, the limitation of the mesoscale meteorological model was verified by WRF (Weather Research and Forecasting) model for a summer fog event around the Nakdong river in Korea. The sensitivity analyses of simulation accuracy from the numerical model were conducted using two different initial and boundary conditions: KLAPS (Korea Local Analysis and Prediction System) and LDAPS (Local Data Assimilation and Prediction System) data. In addition, the improvement of numerical model performance by FDDA (Four-Dimensional Data Assimilation) using the observational data from AWS (Automatic Weather System) was investigated. The result of sensitivity analysis showed that the accuracy of simulated air temperature, dew point temperature, and relative humidity with LDAPS data was higher than those of KLAPS, but the accuracy of the wind speed of LDAPS was lower than that of KLAPS. Significant difference was found in case of relative humidity where RMSE (Root Mean Square Error) for LDAPS and KLAPS was 15.7 and 35.6%, respectively. The RMSE for air temperature, wind speed, and relative humidity was improved by approximately $0.3^{\circ}C$, $0.2m\;s^{-1}$, and 2.2%, respectively after incorporating the FDDA.