• 제목/요약/키워드: Improvement of Surface Layer

검색결과 474건 처리시간 0.028초

고주파유도로를 이용한 초급속열처리 구상흑연주철의 피로파괴특성 (Fatigue Fracture Behavior in Super-Rapid induction Quenched Spheroidal Graphite Cast Iron)

  • 지정근;김진학;김민건
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.25-29
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the fatigue behavior of high performance ductile cast iron experienced super rapid induction heat treatment. The effect of super rapid induction treatment on fatigue limit was experimentally examined with the special focus on the variation surface microstructure and the fatigue crack initiation and propagation through fractography. Main results obtained are as follows. By super rapid induction treatment in FCD500, the martensite structure obtained through conventional quenching heat treatment was confirmed on the specimen surface. The fatigue crack initiation in the hardened surface layer was restricted by the martensite structure and compressive residual stress. Thus, it could be interpreted that the initiation stress would be increased by the improvement of surface structure. The fatigue crack propagation in the hardened layer was retarded by the presence of the globular shape martensite around the graphite nodule and compressive residual stress. The crack propagation path has shown zigzag pattern in the hardened surface layer.

  • PDF

하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진 (Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder)

  • 윤유현;이종국
    • 한국재료학회지
    • /
    • 제33권8호
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

원자층 증착법으로 형성된 Al2O3 박막의 질소 도핑에 따른 실리콘 표면의 부동화 특성 연구 (Study on the Passivation of Si Surface by Incorporation of Nitrogen in Al2O3 Thin Films Grown by Atomic Layer Deposition)

  • 홍희경;허재영
    • 마이크로전자및패키징학회지
    • /
    • 제22권4호
    • /
    • pp.111-115
    • /
    • 2015
  • 실리콘 태양전지의 효율을 향상하기 위해서는 소수 캐리어의 높은 수명이 필수조건이다. 따라서, 이를 달성하기 위한 실리콘 표면결함을 없애줄 수 있는 부동화(passivation) 기술이 매우 중요하다. 일반적으로 PECVD 법이나 열산화 공정을 통해 얻어진 $SiO_2$ 박막이 부동화 층으로 많이 사용되나 1000도에 이르는 고온 공정과 낮은 열적 안정성이 문제로 여겨진다. 본 연구에서는 원자층 증착법을 이용하여 400도 미만의 저온 공정을 통해 $Al_2O_3$ 부동화 박막을 형성하였다. $Al_2O_3$ 박막은 고유의 음의 고정 전하밀도로 인해 낮은 표면 재결합속도를 보이는 것으로 알려져 있다. 본 연구에서는 질소 도핑을 통해 높은 음의 고정 전하 밀도를 얻고 이를 통해 좀 더 향상된 실리콘 표면 부동화 특성을 얻고자 하였다.

Surface Characteristics of Anodized Ti-3wt%, 20wt%, and 40wt%Nb Alloys

  • Ko, Y.M.;Choe, H.C.;Jang, S.H.;Kim, T.H.
    • Corrosion Science and Technology
    • /
    • 제8권4호
    • /
    • pp.143-147
    • /
    • 2009
  • In biomedical implants and dental fields, titanium has been widely utilized for excellent corrosion resistance and biocompatibility. However, Ti and its alloys are nonbioactive after being implanted in bone. In this study, for the purpose of improvement in biocompatibility the anodic $TiO_2$ layer on Ti-xNb alloys were fabricated by electrochemical method in phosphate solution, and the effect of Nb content on the pore size, the morphology and crystallinity of Ti oxide layer formed by the anodic oxidation method was investigated. The Ti containing Nb up to 3 wt%, 20 wt% and 40 wt% were melted by using a vacuum furnace. The sample were cut, polished, and homogenized for 24 hr at $1050^{\circ}C$ for surface roughness test and anodizing. Titanium anodic layer was formed on the specimen surface in an electrolytic solution of 1 M phosphoric acid at constant current densities ($30mA/cm^2$) by anodizing method. Microstructural morphology, crystallinity, composition, and surface roughness of oxide layer were observed by FE-SEM, XRD, EDS, and roughness tester, respectively. The structure of alloy was changed from $\alpha$-phase to $\beta$-phase with increase of Nb content. From XRD results, the structure of $TiO_2$ formed on the Ti-xNb surface was anatase, and no peaks of $Nb_2O_5$ or other Nb oxide were detected suggesting that Nb atoms are dispersed in $TiO_2$-based solid solution. Surface roughness test and SEM results, pore size formed on surface and surface roughness decreased as Nb content increased. From the line analysis results, intensity of Ti peak was high in the center of pore, whereas, intensity of O peak was high in the outside of pore center.

GZO/Metal/GZO 하이브리드 구조 투명 전도막의 전기적, 광학적 특성; Ag, Cu, Al, Zn 금속 삽입층의 효과 (Electrical and Optical Properties of Transparent Conducting Films having GZO/Metal/GZO Hybrid-structure; Effects of Metal Layer(Ag, Cu, Al, Zn))

  • 김현범;김동호;이건환;김광호
    • 한국표면공학회지
    • /
    • 제43권3호
    • /
    • pp.148-153
    • /
    • 2010
  • Transparent conducting films having a hybrid structure of GZO/Metal/GZO were prepared on glass substrates by sequential deposition using DC magnetron sputtering. Silver, copper, aluminum and zinc thin films were used as the intermediate metal layers in the hybrid structure. The electrical and optical properties of hybrid transparent conducting films were investigated with varying the thickness of metal layer or GZO layers. With increasing the metal thickness, hybrid films showed a noticeable improvement of the electrical conductivity, which is mainly dependent on the electrical property of the metal layer. GZO(40 nm)/Ag(10 nm)/GZO(40 nm) film exhibits a resistivity of $5.2{\times}10^{-5}{\Omega}{\cdot}cm$ with an optical transmittance of 82.8%. For the films with Zn interlayer, only marginal reduction in the resistivity was observed. Furthermore, unlike other metals, hybrid films with Zn interlayer showed a decrease in the resistivity with increasing the GZO thickness. The optimal thickness of GZO layer for anti-reflection effect at a given thickness of metal (10 nm) was found to be critically dependent on the refractive index of the metal. In addition, x-ray diffraction analysis showed that the insertion of Ag layer resulted in the improvement of crystallinity of GZO films, which is beneficial for the electrical and optical properties of hybrid-type transparent conducting films.

Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent

  • Park, Myung-Hyun;Ha, Ji-Hwan;Song, Hyeonjun;Bae, Joonwon;Park, Sung-Hoon
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.387-392
    • /
    • 2018
  • Various technical approaches and concepts have been proposed to develop conductive super-hydrophobic (SH) surfaces. However, most of these approaches are not usable in practical applications because of insufficient adhesion and cost issues. Additionally, durability and uniformity issues are still in need of improvement. The goal of this research is to produce a large-area conductive SH surface with improved adhesion performance and uniformity. To this end, carbon nanotubes (CNT) with a high aspect ratio and elastomeric polymer were utilized as a conductive filler and matrix, respectively, to form a coating layer. Additionally, nanoscale silica particles were utilized for stable implementation of the conductive SH surface. To improve the adhesion properties between the SH coating layer and substrate, pretreatment of the substrate was conducted by utilizing both wet and dry etching processes to create specific organic functional groups on the substrate. Following pretreatment of the surface, a zirco-aluminate coupling agent was utilized to enhance adhesion properties between the substrate and the SH coating layer. Raman spectroscopy revealed that adhesion was greatly improved by the formation of a chemical bond between the substrate and the SH coating layer at an optimal coupling agent concentration. The developed conductive SH coating attained a high electromagnetic interference (EMI) shielding effectiveness, which is advantageous in self-cleaning EMI shielding applications.

칼슘수용액으로 처리한 상아질과 합착용 글래스아이오노머의 전단결합강도에 관한 연구 (A STUDY ON THE SHEAR BOND STRENGTH OF LUTING GLASS IONOMER AND DENTIN TREATED WITH CALCIUM SOLUTION)

  • 백영걸;이성복;박남수
    • 대한치과보철학회지
    • /
    • 제34권3호
    • /
    • pp.593-610
    • /
    • 1996
  • The objective of this paper was to evaluate the shear bond strength of luting glass ionomer cement with defferent calcium based solution treatment on dentin surface. 120 extracted human teeth were classified into 12 group based on presence of smear layer on dentin surface and type of treatment solution. Smear layer remove on dentin surface was done using 6% citric acid for 60 seconds. Five different dentin surface treatment solutions(calcium acetate, calcium carbonate, clacium chlorided, calcium hydroxide, and calcium phosphate) were evaluated in this study. After surface modification, metal ring(inner diameter : 3mm, depth : 1mm) was placed to expose the same dentin surface area and inner space was filled with luting glass ionomer cement according to the recommended procedure for stadard clinical procedure. The shear bond strength of glass ionomer cement was determined after 24 hours. SEM was used for the evaluation of the surface morphologic changes and EDAX analysis was done for determination of the change of the calcium contents of treated dentin. Follwing conclusion can be drawn : 1. In the group of the dentin surface with smear layer, the calcium carbonate solution was the most effective for the increase of the clacium content and the shear bond strength of glass ionomer cement to dentin surfaces. 2. In the group of the calcium carbonate treated dentin with msear layer, the shear bond strength was increased twice compared to the control group and cohesive failure mode was observed. 3. The shear bond strength of cement was increased significantly be the removal of smear layer using 6% citric aicd. However, additional calcium solution treatments were not effective for further bond strength increase. 4. The shear bond strength of cement was significantly improved by both of the removal of smear layer and the calcium solution treatment, and the former was more effective for bond strength improvement. 5. The smear layer removed/calcium solution treated groups showed dentinal tubule obstruction and crystal attachment in SEM evaluation. However, the shear bond strengths of these groups were not increased compared to the smear layer removed/no dentin treatment group.

  • PDF

Pb 기판/활물질 계면의 부식층형성에 미치는 합금원소영향 (Effects of Alloying Elements on the Corrosion Layer Formation of Pb-Grid/Active Materials Interface)

  • 오세웅;최한철
    • 한국표면공학회지
    • /
    • 제40권5호
    • /
    • pp.225-233
    • /
    • 2007
  • Effects of alloying elements on the corrosion layer formation of Pb-grid/active materials interface has been researched for improvement of corrosion resistance of Pb-Ca alloy. For this research, various amounts of alloying elements such as Sn, Ag and Ba were added to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test. Overcharge life cycle test was carried out at $75^{\circ}C$, 4.5 A, for 110 hrs. with KS standard (KSC 8504). And then, after keeping the battery with open circuit state for 48 hr, discharge was carried out at 300A for 30 sec. Corrosion morphology and interface between Pb-grid and active materials were investigated by using ICP, SEM, WDX, and LPM. Corrosion layer of Pb-Ca alloy got thicken with increasing Ca content. For Pb-Ca-Sn alloy, thickness of corrosion layer decreased as Sn and Ag content increased gradually. In case of Pb-Ca-Sn-Ba alloy, thickness of corrosion layer decreased up to 0.02 wt% Ba addition, whereas, it was not changed in case of above 0.02 wt% Ba addition.

고화재 혼합처리를 이용한 월드컵 주경기장 부지의 개량에 관한 연구 (Study on the Improvement of world-cup stadium field using Stabilizer)

  • 천병식;권형석;전진규;양정호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.263-270
    • /
    • 1999
  • In country, for 2002 World-cup the peak is to construct soccer playground. the stabilizing method by additives is mainly applied of permanent improvement for bearing capacity of structure foundation and for strength, durability and transformation of road pavement layer except for construction machine's trafficability and bearing capacity. This study is on soft ground improvement of $\bigcirc$$\bigcirc$ world-cup stadium field. construction field constitutes of very various layers and after construction the lawn grass should be planted on the surface of the earth and in addition, chemical effects should be limited from improved ground layer. Mixing soft clay in field with three domestic representative additives, it evaluated the unconfined compression strength. In the results, after curing during 28 days the objective strength has been obtained on about 5% combination ratio.

  • PDF

연마성능 제어를 위한 연마패드표면 해석과 개선 (Polishing Pad Analysis and Improvement to Control Performance)

  • 박재홍;키노시타마사하루;요시다 코이치;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제20권10호
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.