• 제목/요약/키워드: Improved Support Vector Machine

검색결과 144건 처리시간 0.027초

Incremental Eigenspace Model Applied To Kernel Principal Component Analysis

  • Kim, Byung-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.345-354
    • /
    • 2003
  • An incremental kernel principal component analysis(IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis(KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is that, in order to update the eigenvectors with another data, the whole eigenvectors should be recomputed. IKPCA overcomes this problem by incrementally updating the eigenspace model. IKPCA is more efficient in memory requirement than a batch KPCA and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA for the classification problem on nonlinear data set.

  • PDF

AUTOMATIC SELECTION AND ADJUSTMENT OF FEATURES FOR IMAGE CLASSIFICATION

  • Saiki, Kenji;Nagao, Tomoharu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.525-528
    • /
    • 2009
  • Recently, image classification has been an important task in various fields. Generally, the performance of image classification is not good without the adjustment of image features. Therefore, it is desired that the way of automatic feature extraction. In this paper, we propose an image classification method which adjusts image features automatically. We assume that texture features are useful in image classification tasks because natural images are composed of several types of texture. Thus, the classification accuracy rate is improved by using distribution of texture features. We obtain texture features by calculating image features from a current considering pixel and its neighborhood pixels. And we calculate image features from distribution of textures feature. Those image features are adjusted to image classification tasks using Genetic Algorithm. We apply proposed method to classifying images into "head" or "non-head" and "male" or "female".

  • PDF

Study on gesture recognition based on IIDTW algorithm

  • Tian, Pei;Chen, Guozhen;Li, Nianfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.6063-6079
    • /
    • 2019
  • When the length of sampling data sequence is too large, the method of gesture recognition based on traditional Dynamic Time Warping (DTW) algorithm will lead to too long calculation time, and the accuracy of recognition result is not high.Support vector machine (SVM) has some shortcomings in precision, Edit Distance on Real Sequences(EDR) algorithm does not guarantee that noise suppression will not suppress effective data.A new method based on Improved Interpolation Dynamic Time Warping (IIDTW)algorithm is proposed to improve the efficiency of gesture recognition and the accuracy of gesture recognition. The results show that the computational efficiency of IIDTW algorithm is more than twice that of SVM-DTW algorithm, the error acceptance rate is FAR reduced by 0.01%, and the error rejection rate FRR is reduced by 0.5%.Gesture recognition based on IIDTW algorithm can achieve better recognition status. If it is applied to unlock mobile phone, it is expected to become a new generation of unlock mode.

An Efficient Binarization Method for Vehicle License Plate Character Recognition

  • Yang, Xue-Ya;Kim, Kyung-Lok;Hwang, Byung-Kon
    • 한국멀티미디어학회논문지
    • /
    • 제11권12호
    • /
    • pp.1649-1657
    • /
    • 2008
  • In this paper, to overcome the failure of binarization for the characters suffered from low contrast and non-uniform illumination in license plate character recognition system, we improved the binarization method by combining local thresholding with global thresholding and edge detection. Firstly, apply the local thresholding method to locate the characters in the license plate image and then get the threshold value for the character based on edge detector. This method solves the problem of local low contrast and non-uniform illumination. Finally, back-propagation Neural Network is selected as a powerful tool to perform the recognition process. The results of the experiments i1lustrate that the proposed binarization method works well and the selected classifier saves the processing time. Besides, the character recognition system performed better recognition accuracy 95.7%, and the recognition speed is controlled within 0.3 seconds.

  • PDF

고차원 데이터 처리를 위한 SVM기반의 클러스터링 기법 (SVM based Clustering Technique for Processing High Dimensional Data)

  • 김만선;이상용
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.816-820
    • /
    • 2004
  • 클러스터링은 데이터 집합을 유사한 데이터 개체들의 클러스터들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 클러스터링의 주요 쟁점은 고차원 데이터를 효율적으로 클러스터링하는 것과 최적화 문제를 해결하는 것이다. 본 논문에서는 SVM(Support Vector Machines)기반의 새로운 유사도 측정법과 효율적으로 클러스터의 개수를 생성하는 방법을 제안한다. 고차원의 데이터는 커널 함수를 이용해 Feature Space로 매핑시킨 후 이웃하는 클러스터와의 유사도를 측정한다. 이미 생성된 클러스터들은 측정된 유사도 값과 Δd 임계값에 의해서 원하는 클러스터의 개수를 얻을 수 있다. 제안된 방법을 검증하기 위하여 6개의 UCI Machine Learning Repository의 데이터를 사용한 결과, 제시된 클러스터의 개수와 기존의 연구와 비교하여 향상된 응집도를 얻을 수 있었다.

An Optimized CLBP Descriptor Based on a Scalable Block Size for Texture Classification

  • Li, Jianjun;Fan, Susu;Wang, Zhihui;Li, Haojie;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.288-301
    • /
    • 2017
  • In this paper, we propose an optimized algorithm for texture classification by computing a completed modeling of the local binary pattern (CLBP) instead of the traditional LBP of a scalable block size in an image. First, we show that the CLBP descriptor is a better representative than LBP by extracting more information from an image. Second, the CLBP features of scalable block size of an image has an adaptive capability in representing both gross and detailed features of an image and thus it is suitable for image texture classification. This paper successfully implements a machine learning scheme by applying the CLBP features of a scalable size to the Support Vector Machine (SVM) classifier. The proposed scheme has been evaluated on Outex and CUReT databases, and the evaluation result shows that the proposed approach achieves an improved recognition rate compared to the previous research results.

Assisted Magnetic Resonance Imaging Diagnosis for Alzheimer's Disease Based on Kernel Principal Component Analysis and Supervised Classification Schemes

  • Wang, Yu;Zhou, Wen;Yu, Chongchong;Su, Weijun
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.178-190
    • /
    • 2021
  • Alzheimer's disease (AD) is an insidious and degenerative neurological disease. It is a new topic for AD patients to use magnetic resonance imaging (MRI) and computer technology and is gradually explored at present. Preprocessing and correlation analysis on MRI data are firstly made in this paper. Then kernel principal component analysis (KPCA) is used to extract features of brain gray matter images. Finally supervised classification schemes such as AdaBoost algorithm and support vector machine algorithm are used to classify the above features. Experimental results by means of AD program Alzheimer's Disease Neuroimaging Initiative (ADNI) database which contains brain structural MRI (sMRI) of 116 AD patients, 116 patients with mild cognitive impairment, and 117 normal controls show that the proposed method can effectively assist the diagnosis and analysis of AD. Compared with principal component analysis (PCA) method, all classification results on KPCA are improved by 2%-6% among which the best result can reach 84%. It indicates that KPCA algorithm for feature extraction is more abundant and complete than PCA.

Hybrid CNN-SVM Based Seed Purity Identification and Classification System

  • Suganthi, M;Sathiaseelan, J.G.R.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.271-281
    • /
    • 2022
  • Manual seed classification challenges can be overcome using a reliable and autonomous seed purity identification and classification technique. It is a highly practical and commercially important requirement of the agricultural industry. Researchers can create a new data mining method with improved accuracy using current machine learning and artificial intelligence approaches. Seed classification can help with quality making, seed quality controller, and impurity identification. Seeds have traditionally been classified based on characteristics such as colour, shape, and texture. Generally, this is done by experts by visually examining each model, which is a very time-consuming and tedious task. This approach is simple to automate, making seed sorting far more efficient than manually inspecting them. Computer vision technologies based on machine learning (ML), symmetry, and, more specifically, convolutional neural networks (CNNs) have been widely used in related fields, resulting in greater labour efficiency in many cases. To sort a sample of 3000 seeds, KNN, SVM, CNN and CNN-SVM hybrid classification algorithms were used. A model that uses advanced deep learning techniques to categorise some well-known seeds is included in the proposed hybrid system. In most cases, the CNN-SVM model outperformed the comparable SVM and CNN models, demonstrating the effectiveness of utilising CNN-SVM to evaluate data. The findings of this research revealed that CNN-SVM could be used to analyse data with promising results. Future study should look into more seed kinds to expand the use of CNN-SVMs in data processing.

스퍼터 금속 박막 균일도 예측을 위한 딥러닝 기반 모델 검증 연구 (Verified Deep Learning-based Model Research for Improved Uniformity of Sputtered Metal Thin Films)

  • 이은지;유영준;변창우;김진평
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.113-117
    • /
    • 2023
  • As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.

  • PDF

영상정보를 활용한 소셜 미디어상에서의 가짜 뉴스 탐지: 유튜브를 중심으로 (Fake News Detection on Social Media using Video Information: Focused on YouTube)

  • 장윤호;최병구
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권2호
    • /
    • pp.87-108
    • /
    • 2023
  • Purpose The main purpose of this study is to improve fake news detection performance by using video information to overcome the limitations of extant text- and image-oriented studies that do not reflect the latest news consumption trend. Design/methodology/approach This study collected video clips and related information including news scripts, speakers' facial expression, and video metadata from YouTube to develop fake news detection model. Based on the collected data, seven combinations of related information (i.e. scripts, video metadata, facial expression, scripts and video metadata, scripts and facial expression, and scripts, video metadata, and facial expression) were used as an input for taining and evaluation. The input data was analyzed using six models such as support vector machine and deep neural network. The area under the curve(AUC) was used to evaluate the performance of classification model. Findings The results showed that the ACU and accuracy values of three features combination (scripts, video metadata, and facial expression) were the highest in logistic regression, naïve bayes, and deep neural network models. This result implied that the fake news detection could be improved by using video information(video metadata and facial expression). Sample size of this study was relatively small. The generalizablity of the results would be enhanced with a larger sample size.