• Title/Summary/Keyword: Improved Shape

Search Result 1,608, Processing Time 0.025 seconds

Numerical Investigation of the Effect of flow Passage Variation on the Projection Distance of the Foam Monitor (유로형상변경에 따른 폼 모니터 분사거리 변화의 수치적 해석)

  • Lee, Young-Hoon;RYU, Young-Chun;Seong, Jeong-Hyun;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.244-251
    • /
    • 2016
  • In this study, the relationship between flow characteristics and projection distance, depending on the shape was examined. A numerical investigation technique for fluid analysis of a foam monitor was developed for the prediction, comparison and validation of the actual injection performance. The foam monitor changes the flow pattern of fluid flow according to the shape, The fluid losses were calculated from the numerical investigation affecting the projection distance. The basic form of foam monitor was used as a designed shape in N. The modified model used the length increase model of the flow path, and straight line of the model. The inlet pressure was 6.5bar. The results showed that the length increase model of the flow path and straight line of the model in the nozzle projection distance had improved. The results comparing the error rates projection performance were well matched to the 7.43% obtained from the validity test of the analysis method.

Estimation of Synthetic Unit Hydrograph Using Geospatial Shape Factors and Nash Model in Mid-size Watershed (중소규모유역의 지형공간적 형상계수를 이용한 Nash 모형기반의 합성단위도 산정)

  • Kim, Jin Gyeom;Kim, Jong Min;Kang, Boo Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.547-558
    • /
    • 2013
  • Improved methodology of Synthetic Unit Hydrograph (SUH) utilized generally in hydrologic design work was suggested. In this study, regression analysis between peak hydrological data and geospatial data was applied to estimate specific peak flow and peak time for determining shape of SUH. Regression formulas for specific peak flow with respect to shape factors show higher coefficient of determination (0.73~0.81) than the ones with geospatial components only (0.52~0.69). The areal limitation of unit hydrograph application is regarded as 500~700 $km^2$. The validation through rainfall-runoff simulation shows encouraging results that relative error is 1.7~29.0%(Avg. 11.6%) for the case of using SUH developed in this study and 35.0~ 64.9% (Avg. 46.7%) for the SUH in the previous study except for the extraordinary cases.

Development of a Bodice BlockforWomen in Their 20s with a Turtle Neck Syndrome Body Shape (거북목 증후군 체형의 20대 여성의 상의 원형패턴 개발)

  • Seo, Yoo Ra;Kim, Hyo Sook
    • Journal of Fashion Business
    • /
    • v.25 no.3
    • /
    • pp.144-158
    • /
    • 2021
  • The purpose of this study is to develop a bodice block suitable for women in their 20s with turtle neck syndrome. The problem of turtle neck syndrome body type was derived through the evaluation of bodice blocks. First, the length of the front bodice was longer and the length of the back bodice was shorter. Second, the front neck point, back neck point, and the shoulder line were not in place. Third, the side neck was pushed up. Fourth, the length of armhole was long and it floated. Fifth, the front hem was attached to the body and the back hem was away from the body. A finally developed pattern was designed by developing four test patterns to solve the problem that appeared in a selected bodice pattern, and a t-test was conducted to determine the difference in the appearance evaluation by virtual clothing between the two patterns, bodice block and the development pattern. According to the result, the fit was not good from the side body because the position of the side neck point was not in a place due to the characteristics of the body shape of turtle neck syndrome, but the problems of the anterior neck position, the position of the back neck point, the shoulder line position, and the armhole shape were improved in the developed pattern.

Classification of Torso Shape According to Abdominal Protrusion of Middle-Aged Women (중년 여성 복부 돌출 정도에 따른 토르소 형태 분류)

  • Do, Wolhee;Lee, Jeongeun
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.226-236
    • /
    • 2021
  • The purpose of this study was to classify the torso shape based on abdominal protrusion caused by changes in the physical characteristics of middle-aged women. This study analyzed 3D shape data of 401 females ranging in age from 40 to 59 years who participated in the 6th Size Korea project. Based on the Size Korea 3D measurement standard, 27 additional items such as height, protrusion, and angle were measured in the 3D scan data. Nine factors were extracted from the analysis of constituent factors of the torso: "vertical size of torso," "flatness and protrusion of abdomen," "torso front extrusion," "upper body height," "bust size and flatness," "size of belly and angle of lower abdomen," "hip length," "hip flatness," and "horizontal size of bust." As a result of the cluster analysis using these nine factors, the torsos of middle-aged women were classified into three types. Type 1 has upper abdominal deposition with a small and long upper body and an advanced abdomen; type 2 has lower abdominal deposition with a small and short torso and a small belly and hip flexion; and type 3 has central abdominal deposition with a big and long torso, large breasts, and protruding abdo¬men front. The middle-aged women were mostly distributed in Type 2. The above results will be useful as basic data for the development of clothing with improved fit to accommodate the changed physical characteristics of middle-aged women.

Pseudo-BIPV Style Rooftop-Solar-Plant Implementation for Small Warehouse Case

  • Cha, Jaesang;Cho, Ju Phil
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.187-196
    • /
    • 2022
  • In this paper, we propose an example of designing and constructing a roof-type solar power plant structure equipped with a Pseudo-BIPV (Building-Integrated Photovoltaic) shape suitable for use as a roof of a small warehouse with a sandwich-type panel structure. As the characteristics of the roof-type solar power generation facility to be installed in the small warehouse proposed in this study, the shape of the roof is not a general A type, but a right-angled triangle shape with the slope is designed to face south. We chose a structure in which an inverter for one power plant and a control facility are linked by grouping several roofs of buildings. In addition, the height of the roof structure is less than 20 cm from the floor, and it has a shape similar to that of the BIPV, so it is building-friendly because it is almost in close contact with the roof. At the same time, the roof creates a reflective light source due to the white color. By linking this roof with a double-sided solar panel, we designed it to obtain both the advantage of the roof-friendliness and the advantage of efficiency improvement for the electric power generation based on the double-sided panel. Compared to the existing solar power generation facilities using A-shaped cross-sectional modules, the power generation efficiency of roofs in this case is increased by more than 11%, which we can confirm, through the comparison analysis of monitoring data between power plants in the same area. Therefore, if the roof-type solar structure suitable for the small warehouse we have presented in this paper is used, the facilities of electric power generation is eco-friendly. Further it is easier to obtain facility certification compared to the BIPV, and improved capacity of the power generation can be secured at low material cost. It is believed that the roof-type solar power generation facility we proposed can be usefully used for warehouse or factory-based smart housing. Sensor devices for monitoring, CCTV monitoring, or safety and environment management, operating in connection with the solar power generation facilities, are linked with the Internet of Things (IoT) solution, so they can be monitored and controlled remotely.

Study on the Effect of Pile Tip Shape on Driven Pile Behavior Using 3D Printers (3D 프린터를 이용한 선단 모양 변화에 따른 타입말뚝 거동 연구)

  • Kim, Dohyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.27-38
    • /
    • 2023
  • In this study, the impact of pile tip geometry, including shape, size, and angle, on the drivability and stress concentration during pile driving was investigated using 3D printing technology and finite element numerical analysis. A series of field loading tests were conducted on a test pile with various pile tip conditions, including width, angle, and shape. The changes in settlement were quantified as a ratio to the settlement of a conventional pile tip case and large deformation finite element analysis was used to investigate the maximum stress on a pile tip and the location of possible damage during pile driving. The results showed that by modifying the shape, size, and angle of the pile tip, the drivability of the pile could be improved and the maximum stress concentration around the pile tip could be significantly reduced, thereby ensuring the structural integrity of the pile during pile driving.

A SIMULATION MODEL FOR DECIDING AN OPTIMIZED 3D SHAPE OF CONSTRUCTION WORKSPACE CONSIDERING RESOURCES IN BIM ENVIRONMENT

  • Hyoun Seok Moon;Hyeon Seung Kim;Leen Seok Kang;Byung Soo Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.163-168
    • /
    • 2013
  • A construction workspace is considered as a critical factor to secure constructability and safety of a project. Specially, optimized size of each workspace helps to minimize any conflicts between workspaces, works and resources within a workspace in the construction site. However, since an existing method for making a decision workspace's size depends on generally experiences of managers and work conditions of activity, it is difficult to perform safe works considering feasible workspace size. The workspace size is changed according to the quantity of resources allocated into each activity as time progresses. Accordingly, it is desirable that optimized workspace size considering input size of resources is determined. To solve these issues, this study configures an optimized model for deciding standard size of workspaces by simple regression analysis and develops a visualized scenario model for simulating the optimized workspace shape in order to support BIM (Building Information Modeling) environment. For this, this study determines an optimized resource shape size considering maximum working radius of each resource and constructs its visual model. Subsequently, input size of resources for each activity is estimated considering safety execution area of resources and workspaces. Based on this, an optimized 3D workspace shape is generated as a VR simulation model of a BIM system based on the suggested methodologies. Moreover, operational feasibility of the developed system is evaluated through a case study for a bride project. Therefore, this study provides a visualized framework so that project managers can establish an efficient workspace planning in BIM environment. Besides, it is expected that constructability, productivity and safety of the project will be improved by minimizing conflicts between workspace and congestions between resources within a workspace in the construction phase.

  • PDF

Study on Consolidation Behaviors of Soft Ground by Plastic Board Drain Using Model Tests (실내모형실험에 의한 Plastic Board Drain이 적용된 연약지반의 압밀거동에 관한 연구)

  • You, Seung-Kyong;Hong, Won-Pyo;Yoon, Gil-Lim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.17-23
    • /
    • 2003
  • Accurate prediction of consolidation behaviors of the soft ground improved by plastic board drains is not easy because the consolidation characteristics of the improved ground has not been fully elucidated yet. The shape of drains is one of the most important factors which affect the consolidation characteristics of the improved ground. In this paper, a series of model consolidation tests of soft clay ground improved by plastic board drain were carried out, in order to investigate the effect of both plastic board width and stress level on consolidation characteristics of the improved ground. As the results, behaviors of both settlement and excess pore pressure dissipation were elucidated. Also, the non-uniform distribution of water content in the model ground was obtained. Then, in order to investigate the effect of vertical drainage on the consolidation behavior in the model tests, the comparison between experimental consolidation behaviors and Barron's theoretical ones were carried out. As the results, it was elucidated that the consolidation behavior in the model tests was affected not only by radial drainage but also by vertical drainage.

  • PDF

A Study on Comparison of Improved Floor Field Model and Other Evacuation Models (개선된 Floor Field Model과 다른 피난시뮬레이션 모델의 비교 연구)

  • Nam, Hyunwoo;Kwak, Suyeong;Jun, Chulmin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.41-51
    • /
    • 2016
  • In this study, we propose an improved Floor Field Model(FFM) that considers the physical characteristics of pedestrians, i.e., body size, shape, and posture. Also we analyse limits of FFM and features of improved model compared with existing evacuation simulation models. FFM is a typical microscopic pedestrian model using CA, but it does not reflect the physical characteristics of pedestrians. Because of this, FFM is difficult to modeling phenomena such as collision, friction between pedestrians. As a result, FFM calculates a very short evacuation time when compared with the other models. We performed a computational experiment to compare improved model with other models such as FFM, Simulex, Pathfinder in an actual campus building. We carried out a comparison of evacuation aspect according to the change in number of evacuees. Also we compared evacuation aspect by exit. Finally, we confirmed that improved model reflects physical phenomena which were not reflected in FFM. Especially, experimental results were very similar to the Simulex.

Reduction of Melting Energy by Customized Charging of Press Scrap (생압고철의 맞춤형 장입을 통한 용해에너지 절감)

  • Lee, Sang-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.41 no.4
    • /
    • pp.342-348
    • /
    • 2021
  • Almost all ferrous foundries use press scrap as the main charge material. In this study, we tried to reduce the melting energy by optimizing the shape and size of press scrap. The experiment was conducted using 3t/h medium frequency induction melting furnaces at two foundries. In the case of the improved condition, customized press scrap was used for initial charging, and small press scrap was used for additional charging. The energy reduction effect of the improved condition was enhanced by reinforcing the cleaning process of the return scrap surface. The reduction ratios of the melting energy basic unit by the improved condition at the two foundries were almost the same (23.3 and 23.9%). The improved condition was very effective in both foundries with different basic unit levels. The reasons for energy reduction and the economic effects of the improved condition were described.