• Title/Summary/Keyword: Impregnation method

Search Result 295, Processing Time 0.024 seconds

Surface and Chemical Properties of Surface-modified UHMWPE Powder and Mechanical Properties of Self Curing PMMA Bone Cement Containing UHMWPE Powder I. Effect of MMA/Xylene Contents on Surface Modification of UHMWPE (표면개질된 초고분자량 폴리에틸렌 분말의 표면과 화학적 특성 및 이를 함유하는 상온 경화용 폴리(메틸 메타크릴레이트) 뼈 시멘트의 기계적 특성 I. 메틸 메타크릴레이트/자일렌 함량에 따른 초고분자량 폴리에틸렌의 표면 개질 효과)

  • 양대혁;윤관희;김순희;이종문;강길선
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.77-85
    • /
    • 2004
  • It has been widely used ultra high molecular weight polyethylene (UHMWPE) for the biomaterials due to its excellent mechanical properties and biocompatibility. In the case of blend of UHMPE with another polymeric biomaterials, however, UHMWPE might have low blend compatibility due to surface inertness. In this study, in order to improve the mechanical properties of poly(methyl methacrylate) (PMMA) bone cement by means of the impregnation of UHMWPE powder, we developed the novel surface modification method by the mixture of methyl methacrylate (MMA) and xylene. We investigated the variation of composition of MMA/xylene. It was confirmed by the analysis of Fourier transform infrared-attenuated total reflectance, scanning electron microscope, universal transverse mercator, and digital thermometer. The maximum mechanical strength of surface modified UHMWPE powder impregnated PMMA bone cement compound was observed the ratio of 1 : 1 (v/v%) MMA/xylene. Also its curing temperature decreased from 103 $^{\circ}C$ to 58 ∼ 73 $^{\circ}C$ The mechanism of surface modification of UHMWPE powder by the mixture of MMA/xylene has been proposed.

A Study on the Characteristics of CO Oxidation by NO Poisoning in Pt/TiO2 Catalyst (Pt/TiO2 촉매에서의 NO 피독에 의한 CO 산화반응특성 연구)

  • Kim, Min Su;Kim, Se Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • This study was conducted to investigate the characteristics of CO oxidation by NO poisoning in Pt/TiO2 catalyst prepared by wet impregnation method and calcined at 400 ℃. In order to confirm the NO poisoning effect of the Pt/TiO2 catalyst, the change of reaction activity was observed when NO was injected during the CO+O2 reaction where it was ascertained that the CO conversion rate rapidly decreased below 200 ℃. Also, CO conversion was not observed below 125 ℃. Recovery of initial CO conversion was not verified even if NO injection was blocked at 125 ℃. Accordingly, various analyses were performed according to NO injection. First, as a result of the TPD analysis, it was confirmed that NO pre-adsorption in catalyst inhibited CO adsorption and conversion desorption from adsorbed CO to CO2. When NO was pre-adsorbed, it was confirmed through H2-TPR analysis that the oxygen mobility of the catalyst was reduced. In addition, it was validated through FT-IR analysis that the redox cycle (Pt2+→Pt0→Pt2+) of the catalyst was inhibited. Therefore, the presence of NO in the Pt/TiO2 catalyst was considered to be a poisoning factor in the CO oxidation reaction, and it was determined that the oxygen mobility of the catalyst is required to prevent NO poisoning.

The Vacuum Freeze-Drying Experiment for Water-logged Wood Excavated from Wolpyongdong in Taejon (수침목재(水浸木材)의 동결건조(東結乾燥) 실험보고 -대전(大田) 월평동출토(月平洞出土) 유물을 중심(中心)으로-)

  • Kim, Kyoung-su;Yi, Yong-hee
    • Conservation Science in Museum
    • /
    • v.1
    • /
    • pp.27-35
    • /
    • 1999
  • To get the best result from vacuum freeze drying of water-logged wood, it is necessary for objects to find out the best conditions such as chemicals, appropriate concentration of solution, impregnation method and etc. Such best conditions could be set up by pre-treatment experiments. Two kinds of wood(Pinus densiflora S. et Z. and Quercus acutissima Carruth) were pre-treated by four methods: 2-step PEG treatment(PEG#200-PEG#4000), sorbitol treatment, PEG#200+PEG#4000 treatment, and sorbitol+PEG#4000 treatment. After those pre-treatment, vacuum freeze-drying was undertaken. Then the effect of dimensional stability were compared. When using 2-step PEG treatment, a solution of 60% PEG #4000 got the best dimensional stability for pine and in case of the oak, a solution of 40% PEG#4000 got the best. Sorbitol treatment got rather good result for the pine only when applied with 40% solution of sorbitol. Sorbitol, PEG#200+PEG#4000 and sorbitol+PEG#4000 treatments to the oak didn't affect on dimensional stability sufficiently.

Correlation between Physicochemical Properties of Various Commercial TiO2 Supports and NH3-SCR Activities of Ce/Ti Catalysts (다양한 상용 TiO2 담체의 물리화학적 특성과 Ce/Ti 촉매의 SCR 반응활성과의 상관성 연구)

  • Kwon, Dong Wook;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.193-198
    • /
    • 2015
  • Ceria supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method. We confirmed that the correlation between physicochemical properties of $TiO_2$ supports and SCR activities. Physicochemical properties of the various $TiO_2$ were evaluated using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS), and pH analysis. Ce/Ti catalyst exhibited different SCR activities with respect to physicochemical properties of $TiO_2$. An excellent activity was obtained as the surface area of $TiO_2$ increased. In the case of CeOx surface density, the excellent activity in a range of $2.5{\sim}14.5CeOx/nm^2$ was achieved and the activity tended to decrease above $14.5CeOx/nm^2$. The O/Ti mole ratio of $TiO_2$ in the range of 1.32 to 1.79 showed an excellent SCR activity. It was also confirmed that the pH of the $TiO_2$ has no effects on the SCR activity. In order to achieve excellent SCR activities, ceria oxide should be supported on $TiO_2$ possessing a high specific surface area and certain O/Ti mole ratio. In addition, the catalyst with the low CeOx surface density resulted from the high dispersed ceria oxide should be prepared.

Conservation Treatment of Mituri (hemp shoes) of the Choseon Dynasty in Sacheon, South Korea (사천 구암 출토 미투리 보존처리)

  • Song, Ji-ae;Jeong, Ah-ruem
    • 보존과학연구
    • /
    • s.34
    • /
    • pp.50-61
    • /
    • 2013
  • The Grave encapsulated by lime soil mixture were excavated with clothing and hemp shoes from the Choseon Dynasty in Gooam, Sacheon. Hemp shoes have wood in the center and their surroundings were made of complex materials including herbaceous ones but the front part was lost or became very fragile. We analyzed the hemp shoes and pre-test of consolidant for conservation treatment of hemp shoes. As a result of analyzing, three kinds of plants were identified. For hemp shoes, Oryza spp, hemp, and one kind of dicotyledones were used and it was analyzed that fabrics attached to the back of Dogaengi was cotton. Conservation methods for pre-test of consolidant, Polyethylene Glycol, Paraloid-B72, Dammar gum, Methyl Cellulose and Silicone resin was selected. The solution was sprayed twice in a 24-hour duration. Properties of consolidant was measured; color difference, glossiness difference, folding streangth and tensile streangth. By comparing the results, PEG was confirmed to the most suitable as consolidant. For the conservation treatment, cleaning and strengthening was conducted. For strengthening treatment, PEG 4000 was selected given that the shoes were made of complex materials. The PEG impregnation method was applied with the PEG 4000 concentration gradually changing from 5% to 80% for reinforcement. Then humidity- controlled drying in order to avoid any rapid environment change.

  • PDF

Electrical Discharge Plasma in a Porous Ceramic Membrane-supported Catalyst for the Decomposition of a Volatile Organic Compound (다공질 세라믹지지 촉매 상에서의 플라즈마 방전을 이용한 휘발성유기화합물의 분해)

  • Jo, Jin-Oh;Lee, Sang Baek;Jang, Dong Lyong;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.433-437
    • /
    • 2013
  • Electrical discharge plasma created in a multi-channel porous ceramic membrane-supported catalyst was applied to the decomposition of a volatile organic compound (VOC). For the purpose of improving the oxidation capability, the ceramic membrane used as a low-pressure drop catalyst support was loaded with zinc oxide photocatalyst by the incipient wetness impregnation method. Alternating current-driven discharge plasma was created inside the porous ceramic membrane to produce reactive species such as radicals, ozone, ions and excited molecules available for the decomposition of VOC. As the voltage supplied to the reactor increased, the plasma discharge gradually propagated in the radial direction, creating an uniform plasma in the entire ceramic membrane above a certain voltage. Ethylene was used as a model VOC. The ethylene decomposition efficiency was examined with experimental variables such as the specific energy density, inlet ethylene concentration and zinc oxide loading. When compared at the identical energy density, the decomposition efficiency obtained with the zinc oxide-loaded ceramic membrane was substantially higher than that of the bare membrane case. Both nitrogen and oxygen played an important role in initiating the decomposition of ethylene. The rate of the decomposition is governed by the quantity of reactive species generated by the plasma, and a strong dependence of the decomposition efficiency on the initial concentration was observed.

Hydrogen Production by Auto-thermal Reforming of Ethanol over $M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) Catalysts ($M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) 촉매 상에서 에탄올 자열개질반응에 의한 수소 제조)

  • Youn, Min-Hye;Seo, Jeong-Gil;Cho, Kyung-Min;Park, Sun-Young;Kim, Pil;Song, In-Kyu
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.287-292
    • /
    • 2007
  • [ $M/Al_2O_3$ ] (M = Mn, Fe, Co, Ni, Cu) catalysts supported on commercial alumina ($Al_2O_3$) were prepared by an impregnation method, and were applied to the hydrogen production by auto-thermal reforming of ethanol. It was revealed that each catalyst retained its own metallic phase and product distribution strongly depended on the identity of active metal. Among the catalysts prepared, $Ni/Al_2O_3$ and $Co/Al_2O_3$ showed the best catalytic performance in the auto-thermal reforming of ethanol. However, the reaction mechanisms over these two catalysts were different. Ni/Al_2O_3 catalyst showed 100% ethanol conversion at $500^{\circ}C$, but it exhibited a rapid decrease in hydrogen selectivity. Although $Co/Al_2O_3$ catalyst showed an excellent performance in hydrogen selectivity, on the other hand, no significant improvement in hydrogen yield was observed due to the low ethanol conversion over the catalyst.

  • PDF

Effect of the Structure of MoO3/bismuth molybdate Binary Phase Catalysts on the Selective Oxidation of Propylene (MoO3/bismuth molybdate 혼합 2상 촉매의 구조에 따른 프로필렌 선택산화반응 특성)

  • Cha, T.B.;Choi, M.J.;Park, D.W.;Chung, J.S.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-63
    • /
    • 1992
  • M/BM -series catalysts, $MoO_3$ supported on ${\alpha}-Bi_2Mo_3O_{12}$ were also prepared by impregnation method. BM/M-series catalysts, ${\alpha}-Bi_2Mo_3O_{12}$ supported on $MoO_3$ were also prepared by coprecipitation. Structure and catalytic properties of the two phase catalysts were studied by means of using nitrogen adsorption, X-ray diffraction, and scanning electron microscopy. The reaction test for the selective oxidation of propylene to acrolein over Bi-molybdate catalysts was studied using a fixed-bed reactor system. In M/BM-series catalysts, $MoO_3$ was dispersed on ${\alpha}-Bi_2Mo_3O_{12}$, and the crystal structure of ${\alpha}-Bi_2Mo_3O_{12}$ remains unchanged by the presence of excess $MoO_3$. However the surface morphology and bulk structure of BM/M-series catalysts were altered probably because the precipitated $Bi(OH)_3$ reacted with $MoO_3$ during the calcination to form ${\alpha}-Bi_2Mo_3O_{12}$ phase. The results of propylene oxidation on both series catalysts showed that the reaction took place over the surface of ${\alpha}-Bi_2Mo_3O_{12}$ particle and the role of excess $MoO_3$ was to supply oxygen to ${\alpha}-Bi_2Mo_3O_{12}$. These increasing effects on activity were also observed in the mechanical mixtures of ${\alpha}-Bi_2Mo_3O_{12}$ and $MoO_3$.

  • PDF

Adsorption Study of IAQ Index CO2 (실내공기질 지표 이산화탄소 농도제어를 위한 흡착연구)

  • Wang, Jie;Jo, Young Min;Oh, Jongmin;Heo, Jeong Sook
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.198-209
    • /
    • 2020
  • In this study, electrospun nanofibers made of PAN (polyacrylonitrile) were activated through a physical method to obtain an optimized pore structure. In particular, to enhance the surface alkalinity, the activated carbon fibers (ANFs) were impregnated with tetraethylenepentamine (TEPA) with the aid of HNO3. Then, the low level (3,000 ppm) CO2 adsorption capacity for each ANF sample was evaluated. The specific surface area of ANFs increased from 308.4 ㎡/g to 839.4 ㎡/g and the total pore volume increased from 7.882 ㎤/g to 27.50 ㎤/g. Although the TEPA impregnation reduced the specific surface area and pore volume of the ANFs due to blocking of micropores, the HNO3 pre-oxidation enhanced the amino groups tethered, increasing the amine content from 6.42% to 17.19%, and finally, increased the adsorption capacity of CO2. This study showed that the sample 60-ANF-HNO3-TEPA, which was activated for 60 minutes and was impregnated with HNO3 and TEPA, had the best adsorption capacity for low level (0.3%) CO2 (in a binary mixture with N2).

A Study on the Characteristics of VOC Removal by Cordierite Filter Loaded with Catalyst (촉매를 담지한 코디어라이트 필터의 VOC 제거 특성에 관한 연구)

  • Chung, Kyung-Won;Kim, Yong-Nam;Park, Jeong-Hyun;Choi, Beom-Jin;Cho, Eul-Hoon;Lee, Hee-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.263-269
    • /
    • 2002
  • After porous filters were manufactured using cordierite powder whose mean particle size was 200 ${\mu}m$, they were loaded with catalysts such as Pt, Pd, Cu, Co, La, $V_2O_5$ by vacuum impregnation method. And we investigated the activity of catalysts used for catalytic oxidation of VOC by passing toluene through catalyst-loaded filters. The porous filters had the apparent porosity of 62%, the compressive strength of about 10 MPa and the pressure drop of 15 mmHg at the face velocity of 5 cm/sec. The loading of catalyst decreased the porosity of the filters and increased the pressure drop and the compressive strength of them. Among the catalysts, Pt had the highest activity for catalytic oxidation and could remove more than 90% of toluene at 250 $^{\circ}C$. Below 250 $^{\circ}C$, the content of Pt catalyst had an influence on the conversion of toluene but didn't show any influence above 250 $^{\circ}C$.