References
-
Adelodun AA, Lim YH, Jo YM. 2014a. Effect of UV-C on pre-oxidation prior amination for preparation of a selective
$CO_2$ adsorbent. Journal of Analytical and Applied Pyrolysis. 105: 191-198. https://doi.org/10.1016/j.jaap.2013.11.004 -
Adelodun AA, Lim YH, Jo YM. 2014b. Stabilization of potassium-doped activated carbon by amination for improved
$CO_2$ selective capture. Journal of Analytical and Applied Pyrolysis. 108: 151-159. https://doi.org/10.1016/j.jaap.2014.05.005 -
Adelodun AA, Jo YM. 2013. Integrated basic treatment of activated carbon for enhanced
$CO_2$ selectivity. Applied Surface Science. 286(1): 306-313. https://doi.org/10.1016/j.apsusc.2013.09.076 -
Chiang YC, Chen YJ, Wu CY. 2017. Effect of relative humidity on adsorption breakthrough of
$CO_2$ on activated carbon fibers. Materials. 10(11): 1296. https://doi.org/10.3390/ma10111296 - Chingombe P, Saha B, Wakeman RJ. 2005. Surface modification and characterisation of a coal-based activated carbon. Carbon. 43(15): 3132-3143. https://doi.org/10.1016/j.carbon.2005.06.021
- Han Y, Li R, Bruckner C, Vadas TM. 2018. Controlling the surface oxygen groups of polyacrylonitrile-based carbon nanofiber membranes while limiting fiber degradation. Journal of Carbon Research. 4(3): 40. https://doi.org/10.3390/c4030040
-
Houshmand A, Wan Daud WMA, Shafeeyan MS. 2011. Exploring potential methods for anchoring amine groups on the surface of activated carbon for
$CO_2$ adsorption. Separation Science and Technology. 46(7): 1098-1112. https://doi.org/10.1080/01496395.2010.546383 -
Hwang SH, Kim DW, Jung DW, Jo YM. 2016. Impregnation of nitrogen functionalities on activated carbon fiber adsorbents for low-level
$CO_2$ capture. Jouranl of Korean Society for Atmospheric Environment. 32(2): 176-183. [Korean Literature] https://doi.org/10.5572/KOSAE.2016.32.2.176 -
Jiao J, Cao J, Xia Y, Zhao LZ. 2016. Improvement of adsorbent materials for
$CO_2$ capture by amine functionalized mesoporous silica with worm-hole framework structure. Chemical Engineering Journal. 306(15): 9-16. https://doi.org/10.1016/j.cej.2016.07.041 -
Lim G, Lee KB, Ham HC. 2016. Effect of Ncontaining functional groups on
$CO_2$ adsorption of carbonaceous materials: A density functional theory approach. The Journal of Physical Chemistry. 120(15): 8087-8095. -
Lim HH, Lim YH, Jo YM. 2012. Characterization of AC-based adsorbents for
$CO_2$ capture. Journal of Korean Society for Indoor Environment. 9(1): 9-18. [Korean Literature] -
Lim HY. 2014.
$CO_2$ capture using amino acid salts and fixation by alkali aqueous solution. Ph.D. dissertation. Kyung Hee University, Seoul. [Korean Literature] - Lim YH, Adelodun AA, Kim DW, Jo YM. 2016. Surface impregnation of glycine to activated carbon adsorbent for dry capture of carbon dioxide. Asian Journal of Atmospheric Environment. 10(2): 99-113. https://doi.org/10.5572/ajae.2016.10.2.099
- Mahardiani L, Saputro S, Baskoro F, Zinki NM, Taufiq M. 2019. Facile synthesis of carboxylated activated carbon using green approach for water treatment. IOP Conferences Series: Materials Science and Engineering. 578: 012003. https://doi.org/10.1088/1757-899X/578/1/012003
-
Masoud JL, Soheil K, Abdelhamid S. 2019. Stability of amine-functionalized
$CO_2$ adsorbents: a multifaceted puzzle. Chemical Society Reviews. 48(12): 3320-3405. https://doi.org/10.1039/C8CS00877A -
Nausika Q, Plaza MG, Rubiera F, Pevida C. 2016. Water vapor adsorption on biomass based carbons under post-Combustion
$CO_2$ capture conditions: Effect of posttreatment. Materials. 9(5): 359. https://doi.org/10.3390/ma9050359 - Pascal D, Robert S, Saskia H. 2018. Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups. Carbon. 130: 614-622. https://doi.org/10.1016/j.carbon.2018.01.047
-
Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ. 2007.
$CO_2$ capture by adsorption with nitrogen enriched carbons. Fuel. 86(14): 2204-2212. https://doi.org/10.1016/j.fuel.2007.06.001 -
Rao N, Wang M, Shang ZM, Hou YW, Fan GZ, Li JF. 2018.
$CO_2$ adsorption by aminefunctionalized MCM-41: A comparison between impregnation and grafting modification methods. Energy Fuels. 32(1): 670-677. https://doi.org/10.1021/acs.energyfuels.7b02906 - Rajagopalan R, Balakrishnan A. 2018. Innovations in Engineered Porous Materials for Energy Generation and Storage Applications. CRC Press. 116.
- Rivera-Utrilla J, Sanchez-Polo M, Gamez-Serrano V, Alvarez PM, Alvim-Ferraz, MCM, Dias JM. 2011. Activated carbon modifications to enhance its water treatment applications: An overview. Journal of Hazardous Materials. 187(1-3): 1-23. https://doi.org/10.1016/j.jhazmat.2011.01.033
- Ros TG, Dillen AJ, Geus JW, Koningsberger DC. 2002. Surface Oxidation of Carbon Nanofibres. A European Journal. 8(5): 1151-1162. https://doi.org/10.1002/1521-3765(20020301)8:5<1151::AID-CHEM1151>3.0.CO;2-#
-
Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ. 2012. Is
$CO_2$ an indoor pollutant? Direct effects of low-to-moderate$CO_2$ concentrations on human decision-making performance. Environmental Health Perspectives. 120(12): 1671-1677. https://doi.org/10.1289/ehp.1104789 - Shafeeyan MS, Wan Daud WMA, Houshmand A, Shamiri A. 2010. A review on surface modification of activated carbon for carbon dioxide adsorption. Jouranl of Analytical and Applied Pyrolysis. 89(2): 143-151. https://doi.org/10.1016/j.jaap.2010.07.006
- Thakur VK, Thakur MK. 2015. Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications, CRC Press LCC.
- Tiwari S, Bijwe J, Panier S. 2011. Tribological studies on Polyetherimide composites based on carbon fabric with optimized oxidation treatment. Wear. 271(9-10): 2252-2260. https://doi.org/10.1016/j.wear.2010.11.052
- Tran MQ, Ho KC, Kalinka G, Shaffer SP, Bismarck A. 2008. Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fiber/polymer adhesion. Compsites Science and Technology. 68(7): 1766-1776. https://doi.org/10.1016/j.compscitech.2008.02.021
-
Vehvilainen T, Lindholm H, Rintamaki H, Paakkanen R, Hirvonen A, Niemi O, Vinha J. 2016. High indoor
$CO_2$ concentrations in an office environment increases the transcutaneous$CO_2$ level and sleepiness during cognitive work. Journal of Occupational and Environmental Hygiene. 13(1): 19-29. https://doi.org/10.1080/15459624.2015.1076160 - Vinke P, van der Eijk M, Verbree M, Voskamp AF, van Bekkum H. 1994. Modification of the surfaces of a gas-activated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia. Carbon. 32(4): 675-686. https://doi.org/10.1016/0008-6223(94)90089-2
-
Wang JT, Wang M, Li WC, Qiao WM, Long DH, Ling LC. 2015. Application of polyethylenimineimpregnated solid adsorbents for direct capture of low-concentration
$CO_2$ . The Global Home of Chemical Engineers. 61(3): 972-980. - Wang XF, Li B. 2014. Electrospun nanofibrous sorbents and membranes for carbon dioxide capture, in Electrospun Nanofibers for Energy and Environment Applications. Edited by Ding, B., Yu, J. Y., Springer, Berlin. 249-263.
- Ye Q, Jiang JQ, Wang CX, Liu YM, Pan H, Shi Y. 2012. Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy Fuels. 26(4): 2497-2504. https://doi.org/10.1021/ef201699w
-
Yu J, Chuang SSC. 2017. The role of water in
$CO_2$ capture by amine. Industrial & Engineering Chemistry Research. 56(21): 6337-6347. https://doi.org/10.1021/acs.iecr.7b00715 - Zhang X, Pei X, Jia Q, Wang Q. 2009. Effects of CFs surface treatment on the tribological properties of 2D woven carbon fabric/ polyimide composites. Applied Physics A. 95(3): 793-799. https://doi.org/10.1007/s00339-009-5073-x