• 제목/요약/키워드: Impregnated adsorbent

검색결과 48건 처리시간 0.025초

Hydrazine 첨착 흡착제에 의한 담배 주류연 중 카보닐 화합물의 선택 흡착 특성 (Selective Adsorption Properties of Carbonyl Compounds in Cigarette Mainstream Smoke by Hydrazine Impregnated Adsorbent)

  • 박진원;이문수;이존태;황건중;황택성
    • 한국연초학회지
    • /
    • 제27권2호
    • /
    • pp.178-188
    • /
    • 2005
  • To use the filter materials for selective removal of carbonyl compounds in cigarette mainstream smoke, hydrazine such as 2,4-dinitrophenylhydrazine and dansylhydraznie impregnated adsorbents were prepared with perchloric acid or phosphoric acid as a accelerator in hydrazone formation reaction. The change of morphology of adsorbents in various of impregnator were investigated by SEM. Impregnation amount caused by reaction time, acid type and impregnation reagent, and the adsorption properties of carbonyl compounds in cigarette mainstream smoke were investigated. Amounts of impregnation was increased as increasing reaction time. The removal amount for vapor phase carbonyl compounds by 2,4-DNPH impregnated adsorbent was higher than that of dansylhydrazine impregnated adsorbent. The selectivity of 2,4-DNPH impregnated polyacrylic type adsorbent was superior to those of other adsorbents. This results indicated that the 2,4-DNPH impregnated polyacrylic adsorbent was applicable to cigarette filter material because of its fast reactivity and porosity.

정수슬러지 유래 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체 흡착 성능 비교 (Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon)

  • 이철호;박나영;김고운;전종기
    • 공업화학
    • /
    • 제27권1호
    • /
    • pp.62-67
    • /
    • 2016
  • 본 연구에서는 정수슬러지를 원료로 사용하여 펠렛형 흡착제를 제조하고 질소흡착법, XRD, XRF 및 암모니아 승온탈착법 등을 사용하여 물리 화학적 특성을 분석하였다. 정수슬러지 유래 펠렛형 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체의 흡착 성능을 비교하였다. 정수슬러지로부터 제조된 펠렛형 흡착제는 첨착활성탄보다 표면적과 기공부피는 훨씬 작지만 암모니아를 훨씬 더 많이 흡착할 수 있었다. 이는 정수슬러지로부터 제조된 펠렛형 흡착제 표면에 산점이 훨씬 더 많이 분포해 있어서 화학흡착에 의해 암모니아를 흡착하기 때문이다. 반면에, 산성가스인 포름알데히드 가스 흡착의 경우는 넓은 표면적과 발달된 기공으로 인하여 첨착활성탄의 흡착성능이 정수슬러지로부터 제조된 펠렛형 흡착제에 비해 훨씬 우수하였다.

Hydrazine 첨착 흡착제의 제조 및 담배 주류연 중 카보닐 화합물의 선택 흡착 특성 (Preparation of Hydrazine Impregnated Adsorbents and Selective Adsorption Properties for Carbonyl Compounds in Cigarette Mainstream Smoke)

  • 이존태;박진원;이정민;이문수;황건중;황택성
    • 폴리머
    • /
    • 제30권3호
    • /
    • pp.210-216
    • /
    • 2006
  • 담배 주류연 중 카보닐 화합물의 선택적 감소를 위한 필터 물질을 제조하기 위하여 하이드라존 반응에 있어서 촉진제로 사용되는 과염소산과 인산을 2,4-dinitrophenylhydrazine (2,4-DNPH)와 dansylhydrazine (DAH)과 함께 각각의 흡착제에 첨착시켰다. 제조된 첨착 흡착제의 구조는 FTIR/ATR을 이용하여 확인하였으며 SEM을 이용하여 표면을 관찰하였다. 또한 첨착 시간과 촉진제 그리고 첨착 시약에 따른 첨착량과 담배 주류연 중 카보닐 화합물의 흡착특성을 조사하였다. 첨착량은 첨착 시간에 따라 증가되었으며 2.4-DNPH를 첨착한 흡착제의 경우 다른 흡착제에 비해 카보닐 화합물의 제거 효율이 우수하였다. 또한 폴리아크릴계 흡착제에 2,4-DNPH를 첨착시킬 경우 다른 기재의 흡착제에 비해 우수한 제거 효율을 나타내었는데 이러한 결과들로부터 궐련필터로의 적용 가능성을 확인할 수 있었다.

Adsorption behavior of platinum-group metals and Co-existing metal ions from simulated high-level liquid waste using HONTA and Crea impregnated adsorbent

  • Naoki Osawa;Seong-Yun Kim;Masahiko Kubota;Hao Wu;Sou Watanabe;Tatsuya Ito;Ryuji Nagaishi
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.812-818
    • /
    • 2024
  • The volume and toxicity of radioactive waste can be decreased by separating the components of high-level liquid waste according to their properties. An impregnated silica-based adsorbent was prepared in this study by combining N,N,N',N',N",N"-hexa-n-octylnitrilotriacetamide (HONTA) extractant, N',N'-di-n-hexyl-thiodiglycolamide (Crea) extractant, and macroporous silica polymer composite particles (SiO2-P). The performance of platinum-group metals adsorption and separation on prepared (HONTA + Crea)/SiO2-P adsorbent was then assessed together with that of co-existing metal ions by batch-adsorption and chromatographic separation studies. From the batch-adsorption experiment results, (HONTA + Crea)/SiO2-P adsorbent showed high adsorption performance of Pd(II) owing to an affinity between Pd(II) and Crea extractant based on the Hard and Soft Acids and Bases theory. Additionally, significant adsorption performance was observed toward Zr(IV) and Mo(VI). Compared with studies using the Crea extractant, the high adsorption performance of Zr(IV) and Mo(VI) is attributed to the HONTA extractant. As revealed from the chromatographic experiment results, most of Pd(II) was recovered from the feed solution using 0.2 M thiourea in 0.1 M HNO3. Additionally, the possibility of recovery of Zr(IV), Mo(VI), and Re(VII) was observed using the (HONTA + Crea)/SiO2-P adsorbent.

첨착활성탄을 이용한 tert-Butyl Mercaptan의 흡착특성 연구 (Adsorption characteristics of tert-Butyl Mercaptan on Impregnated Activated Carbon)

  • 김상범
    • 한국가스학회지
    • /
    • 제7권1호
    • /
    • pp.47-52
    • /
    • 2003
  • 본 연구에서는 부취물질인 tert-butyl mercaptan을 효율적으로 제거하기 위해 활성탄에 염화구리나 요오드화칼륨이 첨착된 첨착활성탄과 비첨착 활성탄의 흡착능을 비교 고찰하였다. 염화구리나 요오드화칼륨이 첨착된 활성탄이 비침착활성탄에 비해 흡착능이 월등히 우수하였다. 또한 첨착률에 따른 흡착능을 조사하였으며 첨착률이 일정량이상 증가하면 흡착성능이 감소하였다. 첨착 후 탈착되는 물질을 적외선 분광 분석기를 사용하여, 분석한 결과 tert-butyl mercaptan이 부취능이 1/1000이하인 tert-butyl dimethyl sulfide로 전환되었으며 질소분위기하에서의 반응실험을 통해 반응 메카니즘을 규명 하고자 하였다.

  • PDF

염기성용액으로 첨착시킨 활성탄의 물성분석 및 $H_2S$ 흡착특성 ($H_2S$ Adsorption Characteristics and Property Analyses of Activated Carbon Adsorbent Impregnated with Basic Solutions)

  • 이석기;임창선;박영성
    • 대한환경공학회지
    • /
    • 제32권11호
    • /
    • pp.1011-1016
    • /
    • 2010
  • 본 연구에서는 NaOH, KOH, $(CH_2CH_2OH)_2NH$ 등의 염기성용액으로 첨착(함침)시킨 활성탄의 물리.화학적 특성을 분석하고 H2S 흡착특성을 고찰하였다. 실험변수로는 흡착온도($25{\sim}45^{\circ}C$), 흡착질인 황화수소 가스농도(18.23 mg/L) 등이 적용되었다. 첨착시약으로 사용된 NaOH, KOH 용액의 농도는 1~5 M, $(CH_2CH_2OH)_2NH$ 용액의 농도는 0.1~1 M 범위내에서 적용되었다. 실험결과, 첨착액의 농도가 증가할수록 KOH로 함침시킨 활성탄의 BET 표면적은 $1,050\;m^2/g$에서 $750\;m^2/g$로 감소하였고, NaOH로 함침시킨 활성탄의 표면산도는 0.541 meq/g-AC에서 0 meq/g-AC으로 감소한 반면, pH는 9.54에서 10.94로 증가하는 것으로 밝혀졌다. 또한 첨착활성탄의 $H_2S$ 평형흡착능은 디에탄올아민으로 첨착시킨 경우에 가장 높았으며, 평형흡착능은 흡착온도에 비례함을 보였다. 흡착온도가 $45^{\circ}C$일 때 비첨착활성탄에 비해 2.0~3.3배 높은 수준의 H2S 평형흡착능을 보여 주었다.

Dimerization of tert-Butylmercaptan over the Surface of Aerosil? Impregnated with Copper and Manganese

  • 박동건;박선희;이수진
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권7호
    • /
    • pp.715-719
    • /
    • 2000
  • A ceramic powder of destructive adsorbent was synthesized by impregnating copper and manganese on the surface of silica aerosil@. In-site FTIR measurements on pulses of malodorant tert-butylmercaptan injected over the powder showed that rert-butylmercaptan dimerized into di-tert-hutyldisulfide on the surface of the adsorbent in an ambient condition. GC/MS measurement on the gas over the adsorbent showed no tert-butylmercaptan remaining, and showed only the dimerization product of di-tert-butyldisulfide. Most of the dimerization product, di-tert-butyldisulfide,remained on the surface of the adsorbent as physisorbed condense, and apparently Iowered the destruction efficiency by blocking the surface from the access by tert-butylmercaptan. Upon being heated above $100^{\circ}C$ it was observed that the physisorbed di-tert-butyldisulfide dissociated back into tert-butylmercaptan. tert-butylmercaptan physisorbed on the activated carbon, thereby no dimerization was occurring on the surface of the activated carbon. In an argn environment, the dimerization reaction was practically not occurring even on the surface of the adsorbent, indicating the free oxygen in air was also participating in the dimerization reaction. Water was identified as a by-product of the dimerization reaction. Possible reactions on the surface of the adsorbent were proposed.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2019년도 정기학술대회 발표논문집
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

Removal of toxic hydroquinone: Comparative studies on use of iron impregnated granular activated carbon as an adsorbent and catalyst

  • Tyagi, Ankit;Das, Susmita;Srivastava, Vimal Chandra
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.474-483
    • /
    • 2019
  • In this study, iron (Fe) impregnated granular activated carbon (Fe-GAC) has been synthesized and characterized for various properties. Comparative studies have been performed for use of Fe-GAC as an adsorbent as well as a catalyst during catalytic oxidation of hydroquinone (HQ). In the batch adsorption study, effect of process parameter like initial HQ concentration ($C_o=25-1,000mg/L$), pH (2-10), contact time (t: 0-24 h), temperature (T: $15-45^{\circ}C$) and adsorbent dose (w: 5-50 g/L) have been studied. Maximum HQ adsorption efficiency of 75% was obtained at optimum parametric condition of: pH = 4, w = 40 g/L and t = 14 h. Pseudo-second order model best-fitted the HQ adsorption kinetics whereas Langmuir model best-represented the isothermal equilibrium behavior. During oxidation studies, effect of various process parameters like initial HQ concentration ($C_o:20-100mg/L$), pH (4-8), oxidant dose ($C_{H2O2}:0.4-1.6mL/L$) and catalyst dose (m: 0.5-1.5 g/L) have been optimized using Taguchi experimental design matrix. Maximum HQ removal efficiency of 83.56% was obtained at optimum condition of $C_o=100mg/L$, pH = 6, $C_{H2O2}=0.4mL/L,$ and m = 1 g/L. Overall use of Fe-GAC during catalytic oxidation seems to be a better as compared to its use an adsorbent for treatment of HQ bearing wastewater.

작업환경 중 황화수소 제거를 위한 첨착활성탄소섬유의 흡착특성 (Adsorption Characteristics of Impregnated Activated Carbon Fiber for the Removal of Hydrogen Sulfide at the Working Environment)

  • 김기환;신창섭
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.127-133
    • /
    • 1999
  • One of the major malodorous gas at the working place is hydrogen sulfide and impregnated activated carbon fiber(ACF) was used as a adsorbent to remove this gas. ACF is treated and impregnated with chemicals to increase the adsorption capacity. The experiments showed that the adsorption efficiency for hydrogen sulfide was increased in case of impregnation with $Na_2CO_3$ or KI. Also, by the surface treatment with NaOH, the adsorption efficiency was increased however not so much as impregnation. KI was the best impregnant for this purpose and the optimum concentration was 9wt%. The adsorption capacity of hydrogen sulfide was more than 500mg/g ACF.

  • PDF