• Title/Summary/Keyword: Imprecise Data

Search Result 74, Processing Time 0.023 seconds

Using Fuzzy Numbers in Quality Function Deployment Optimization (QFD 최적화에서 퍼지 넘버의 이용)

  • Yoo, Jaewook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.138-149
    • /
    • 2016
  • Quality function deployment (QFD) is a widely adopted customer-oriented product development methodology by translating customer requirements (CRs) into technical attributes (TAs), and subsequently into parts characteristics, process plans, and manufacturing operations. A main activity in QFD planning process is the determination of the target levels of TAs of a product so as to achieve a high level of customer satisfaction using the data or information included in the houses of quality (HoQ). Gathering the information or data for a HoQ may involve various inputs in the form of linguistic data which are inherently vague, or human perception, judgement and evaluation for the information and data. This research focuses on how to deal with this kind of impreciseness in QFD optimization. In this paper, it is assumed as more realistic situation that the values of TAs are taken as discrete, which means each TA has a few alternatives, as well as the customer satisfaction level acquired by each alternative of TAs and related cost are determined based on subjective or imprecise information and/or data. To handle these imprecise information and/or data, an approach using some basic definitions of fuzzy sets and the signed distance method for ranking fuzzy numbers is proposed. An example of a washing machine under two-segment market is provided for illustrating the proposed approach, and in this example, the difference between the optimal solution from the fuzzy model and that from the crisp model is compared as well as the advantage of using the fuzzy model is drawn.

Probabilistic assessment on the basis of interval data

  • Thacker, Ben H.;Huyse, Luc J.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.331-345
    • /
    • 2007
  • Uncertainties enter a complex analysis from a variety of sources: variability, lack of data, human errors, model simplification and lack of understanding of the underlying physics. However, for many important engineering applications insufficient data are available to justify the choice of a particular probability density function (PDF). Sometimes the only data available are in the form of interval estimates which represent, often conflicting, expert opinion. In this paper we demonstrate that Bayesian estimation techniques can successfully be used in applications where only vague interval measurements are available. The proposed approach is intended to fit within a probabilistic framework, which is established and widely accepted. To circumvent the problem of selecting a specific PDF when only little or vague data are available, a hierarchical model of a continuous family of PDF's is used. The classical Bayesian estimation methods are expanded to make use of imprecise interval data. Each of the expert opinions (interval data) are interpreted as random interval samples of a parent PDF. Consequently, a partial conflict between experts is automatically accounted for through the likelihood function.

Intelligent Query Processing Using a Meta-Database KaDB

  • Huh, Soon-Young;Moon, Kae-Hyun
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.161-171
    • /
    • 1999
  • Query language has been widely used as a convenient tool to obtain information from a database. However, users demand more intelligent query processing systems that can understand the intent of an imprecise query and provide additional useful information as well as exact answers. This paper introduces a meta-database and presents a query processing mechanism that supports a variety of intelligent queries in a consistent and integrated way. The meta-database extracts data abstraction knowledge from an underlying database on the basis of a multilevel knowledge representation framework KAH. In cooperation with the underlying database, the meta-database supports four types of intelligent queries that provide approximately or conceptually equal answers as well as exact ones.

  • PDF

Autonomous navigation of a mobile robot (이동로보트의 자율주행)

  • 주영훈;이석주;차상엽;장화선;김성권;김광배;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.94-99
    • /
    • 1993
  • In this paper, the method for navigation and obstacle avoidance of an autonomous mobile robot is proposed. It is based on the fuzzy inference system which enables to deal with imprecise and uncertain information, and on the neural network which enables to learn input and output pattern data obtained from ultrasonic sensors. For autonomous navigation, the wall-following navigation utilizing input and output data by an expert's control action is constructed. An approach by the neural network is developed for the obstacle avoidance because of the redundant input data. For an autonomous navigation, the fuzzy control and the control of the neural network are integrated and its feasibility is demonstrated by means of experiment.

  • PDF

A Ship Intelligent Anti-Collision Decision-Making Supporting System Based On Trial Manoeuvre

  • Zhuo, Yongqiang;Yao, Jie
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.176-183
    • /
    • 2006
  • A novel intelligent anti-collision decision-making supporting system is addressed in this paper. To obtain precise anti-collision information capability, an innovative neurofuzzy network is proposed and applied. A fuzzy set interpretation is incorporated into the network design to handle imprecise information. A neural network architecture is used to train the parameters of the Fuzzy Inference System (FIS). The learning process is based on a hybrid learning algorithm and off-line training data. The training data are obtained by trial manoeuvre. This neurofuzzy network can be considered to be a self-learning system with the ability to learn new information adaptively without forgetting old knowledge. This supporting system can decrease ship operators' burden to deal with bridge data and help them to make a precise anti-collision decision.

  • PDF

The Identification of the Magnetic Bearing Control System's Parameters using RCGA (실수코딩 유전알고리즘을 이용한 자기베어링 제어시스템 파라미터의 동정)

  • Jeong, H.H.;Kim, Y.B.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.68-73
    • /
    • 2009
  • The mathematical model has a different response character with the real system because this mathematical model has the modeling errors and the imprecise value of system's parameters. Therefore to find the value of system parameters as possible as near by real value in the model is necessary to design the controlled system. This study concern about the identification method to estimate the parameter for the magnetic bearing system with RCGA(Real Coded Genetic Algorithm). Firstly, we will get the mathematical model from the current amplifier circuit and the magnetic bearing system. Secondly we will get the step response data in this circuit and system. Finally, we will estimate the unknown parameter's value from the data.

  • PDF

Intelligent Query Processing Using a Meta-Database KaDB

  • Huh, Soon-Young;Hyun, Moon-Kae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.161-171
    • /
    • 1999
  • Query language has been widely used as a convenient tool to obtain information from a database. However, users demand more intelligent query processing systems that can understand the intent of an imprecise query and provide additional useful information as well as exact answers. This paper introduces a meta-database and presents a query processing mechanism that supports a variety of intelligent queries in a consistent and integrated way. The meta-database extracts data abstraction knowledge form an underlying database on the basis of a multilevel knowledge representation framework KAH. In cooperation with the underlying database, the meta-database supports four types of intelligent queries that provide approximately or conceptually equal answers as well as exact ones.

  • PDF

Applying Innovative Model and Optimize Business Management for Product Market

  • liao, Shih-chung
    • Journal of Distribution Science
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2013
  • Purpose - Product purpose for optimal values solution for synthesize evaluative criteria and optimize product design values. In addition, product designer has to consider the product design to conform to project, laws and regulations, authentication, from the product design stage. Research design, data, methodology - How to use an evaluative criteria model's imprecise market data by evaluative criteria research design; product mapping relationships between design parameters and customer requirements using product predicted value method. An evaluative criteria model and their associated criteria status, product evaluative criteria model of results. Results - Therefore, after the enterprise product design project analysis, effectiveness and the customer degree of satisfaction must be appraised to obtain the maximum value for the benefit on behalf of the implementation goals, the promotion product level and market competition strength. Conclusions - In multi criterion decision making (MCDM), using its searching software capacity to obtain the optimal solution.

  • PDF

DNA Inspired CVD Diagnostic Hardware Architecture (DNA 특성을 모방한 심혈관질환 진단용 하드웨어)

  • Kwon, Oh-Hyuk;Kim, Joo-Kyung;Ha, Jung-Woo;Park, Jea-Hyun;Chung, Duck-Jin;Lee, Chong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.320-326
    • /
    • 2008
  • In this paper, we propose a new algorithm emulating the DNA characteristics for noise-tolerant pattern matching problem on digital system. The digital pattern matching becomes core technology in various fields, such as, robot vision, remote sensing, character recognition, and medical diagnosis in particular. As the properties of natural DNA strands allow hybridization with a certain portion of incompatible base pairs, DNA-inspired data structure and computation technique can be adopted to bio-signal pattern classification problems which often contain imprecise data patterns. The key feature of noise-tolerance of DNA computing comes from control of reaction temperature. Our hardware system mimics such property to diagnose cardiovascular disease and results superior classification performance over existing supervised learning pattern matching algorithms. The hardware design employing parallel architecture is also very efficient in time and area.

Minmax Regret Approach to Disassembly Sequence Planning with Interval Data (불확실성 하에서 최대후회 최소화 분해 계획)

  • Kang, Jun-Gyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.192-202
    • /
    • 2009
  • Disassembly of products at their end-of-life (EOL) is a prerequisite for recycling or remanufacturing, since most products should be disassembled before being recycled or remanufactured as secondary parts or materials. In disassembly sequence planning of EOL products, considered are the uncertainty issues, i.e., defective parts or joints in an incoming product, disassembly damage, and imprecise net profits and costs. The paper deals with the problem of determining the disassembly level and corresponding sequence, with the objective of maximizing the overall profit under uncertainties in disassembly cost and/or revenue. The solution is represented as the longest path on a directed acyclic graph where parameter (arc length) uncertainties are modeled in the form of intervals. And, a heuristic algorithm is developed to find a path with the minimum worst case regret, since the problem is NP-hard. Computational experiments are carried out to show the performance of the proposed algorithm compared with the mixed integer programming model and Conde's heuristic algorithm.