Using Fuzzy Numbers in Quality Function Deployment Optimization

Jaewook Yoo ${ }^{\dagger}$
Department of Business Administration, Dong-A University

QFD 최적화에서 퍼지 넘버의 이용

유 재 욱 ${ }^{+}$

동아대학교 경영대학 경영학과

Quality function deployment (QFD) is a widely adopted customer-oriented product development methodology by translating customer requirements (CRs) into technical attributes (TAs), and subsequently into parts characteristics, process plans, and manufacturing operations. A main activity in QFD planning process is the determination of the target levels of TAs of a product so as to achieve a high level of customer satisfaction using the data or information included in the houses of quality (HoQ). Gathering the information or data for a HoQ may involve various inputs in the form of linguistic data which are inherently vague, or human perception, judgement and evaluation for the information and data. This research focuses on how to deal with this kind of impreciseness in QFD optimization. In this paper, it is assumed as more realistic situation that the values of TAs are taken as discrete, which means each TA has a few alternatives, as well as the customer satisfaction level acquired by each alternative of TAs and related cost are determined based on subjective or imprecise information and/or data. To handle these imprecise information and/or data, an approach using some basic definitions of fuzzy sets and the signed distance method for ranking fuzzy numbers is proposed. An example of a washing machine under two-segment market is provided for illustrating the proposed approach, and in this example, the difference between the optimal solution from the fuzzy model and that from the crisp model is compared as well as the advantage of using the fuzzy model is drawn.

Keywords: Quality Function Deployment, Impreciseness, Fuzzy Sets, Signed Distance Ranking

1. Instroduction

Quality function deployment (QFD) is a widely adopted customer-oriented product development methodology by analyzing customer requirements (CRs) [1]. It is the basic concept of QFD to make use of a set of charts called the houses of quality (HoQ) to translate CRs into technical attributes (TAs) and subsequently into parts characteristics, process plans, and manufacturing operations [11]. In the stage of trans-

Received 14 March 2016; Finally Revised 14 June 2016; Accepted 17 June 2016
\dagger Corresponding Author : jyoo@dau.ac.kr
lating CRs into TAs, a HoQ typically includes information on the relationship between CRs and TAs, and among TAs and benchmarking data [16]. Based upon the information contained in a HoQ, the optimal levels of the TAs of a product to achieve a high level of customer satisfaction is determined, which is a main activity in QFD planning process. Many studies have been carried out in the field of this kind of QFD optimization.

In this paper, however, we are not proposing a new solution approach for selecting the optimal set of the TAs in the QFD planning process. Instead, we are interested in studying how to deal with imprecise data that would occur in practical circumstances. Gathering the information and/or data for a HoQ
may involve various inputs in the form of linguistic data which are inherently vague, or human perception, judgement and evaluation on the information and/or data [2]. To handle the impreciseness, many researches that combine fuzzy approaches with mathematical programming for QFD optimization have been carried out $[3-10,12-14,16,19,20-23,26,27]$.

On the other hand, a review of the QFD analysis related literature reveals that in many studies, the values of TAs are assumed to be continuous. In the real world applications, however, they are often taken as discrete, which means each TA has a few alternatives [9, 17, 25]. Then, experienced engineers usually assign a single value to the customer satisfaction level achieved by each alternative for TAs and related costs, respectively rather than clarify the precise relationships among them. However, these decisions are usually made based on their subjective experiences and/or vague (fuzzy) information. Thus, in this study, it is assumed that customer satisfaction level and cost for each TA's alternative are imprecise, which may be in the vicinity of a fixed value, or substantially less than or greater than a fixed value. We will focus on how to deal with the imprecise information and/or data necessary for QFD optimization. To deal with this kind of imprecise data, we use some fundamental fuzzy set theory and the signed distance ranking method [15, 18, 28] to model and solve the problem considered in this study.

The proposed approach in this research can be depicted briefly as follows. Consider the cost for an alternative of TAs. Since each cost for TAs, $c_{i}, \forall i$, is imprecise, the engineers should determine an interval $\left[c_{i}-\Delta_{i 1}, c_{i}+\Delta_{i 2}\right], 0 \leq$ $\Delta_{i 1}<c_{i}$ and $0<\Delta_{i 2}$, to represent an acceptable range for the cost of each TA. This range is interpreted as follows. If an estimate of the cost is exactly c_{i}, then the acceptable grade for that cost will be 1 ; otherwise, the acceptable grade will get smaller when an estimate is approaching one of the ends of the interval, i.e., $c_{i}-\Delta_{i 1}$ or $c_{i}+\Delta_{i 2}$. Accordingly, the engineers need to determine an appropriate estimate for each cost from the interval $\left[c_{i}-\Delta_{i 1}, c_{i}+\Delta_{i 2}\right]$. This leads to the use of fuzzy numbers, $\tilde{c}_{i}=\left(c_{i}-\Delta_{i 1}, c_{i}, c_{i}+\Delta_{i 2}\right)$, for the problem considered in this study. Obviously, the membership grade of a fuzzy number in the fuzzy set corresponds to the acceptable grade of an estimate in a given interval. Thus, after defuzzifying the fuzzy number \tilde{c}_{i} using the proposed ranking method, we obtain an estimate for each cost for TAs' alternatives in the fuzzy sense, for example, c_{i}^{*}, which is in the interval $\left[c_{i}-\Delta_{i 1}, c_{i}+\Delta_{i 2}\right.$]. Similarly, this fuzzy logic can be applied to each customer satisfaction level achieved by

TAs' alternatives which is also assumed to be imprecise in this paper and we can obtain an estimate for each customer satisfaction level for TAs' alternatives, for example, $s_{i}^{*}, \forall i$. Then we use c_{i}^{*} and s_{i}^{*} as the cost and the customer satisfaction level for TA i for all i, respectively, to make the fuzzy model crisp, and then use the approach for solving the crisp problem to solve the fuzzy model. The advantage of the proposed fuzzy model in this study is that it is much easier to specify a range value than to give an exact value for each imprecise cost and customer satisfaction level of TAs' alternatives.
The remaining of this paper is organized as follows. The second section introduces the crisp model and the model with fuzzy numbers including some basic definitions of fuzzy sets and the signed distance method for ranking fuzzy numbers. In the third section, an example is shown to illustrate the proposed approach. Finally, conclusions are drawn in the last section.

2. Model

Concisely speaking, the model is based on one proposed by Yoo [25], and in this paper, it extends to fuzzy model. In [25], the problem of determining the optimal levels of the TAs in QFD under a multi-segment product market is formulated as an optimization model. It is supposed that a product has I CRs and J TAs, and the product market is partitioned into T market segments. Based on the information provided in HoQs, an optimization model is built with the objective of maximizing the overall customer satisfaction (OCS) within limited budget under a multi-segment market. In this research, it is assumed that the two data in the above model, customer satisfaction level and cost for each TA's alternative, are imprecise. To deal with these imprecise data, an approach using fundamental fuzzy set theory and the signed distance ranking method is proposed to build the fuzzy optimization model.

Section 2.1, 2.2, and 2.3 briefly introduce the model built in [25]. In section 2.4, the proposed approach in this study to handle the imprecise data is illustrated.

2.1 Modelling the OCS for a Product Market

For market segment t, we can obtain the relative importance of CR i from the other CRs, $w_{i t}\left(0 \leq w_{i t} \leq 1\right.$ and $\left.\sum_{i=1}^{I} w_{i t}=1\right)$,
and the relationship between $\mathrm{CR} i$ and TA $j, r_{i j t}\left(0 \leq r_{i j t} \leq 1\right.$ and $\sum_{j=1}^{J} r_{i j t}=1$). Since the values of TAs are assumed to be discrete in this research, $T A_{j k t}$ represents alternative k of TA j in market segment t. $s_{i j k t}$ refers to the customer satisfaction level for CR i acquired by $T A_{j k t}$. $S_{j k t}$ means the overall customer satisfaction for CRs in market segment t achieved by $T A_{j k t}$. Then, $S_{j k t}$ can be defined as the following

$$
\begin{equation*}
S_{j k t}=\sum_{i=1}^{I} w_{i t} r_{i j t} s_{i j k t} x_{j k t} \tag{1}
\end{equation*}
$$

where $x_{j k t}$ is equal to 1 if alternative k of TA j in market segment $t, T A_{j k t}$, is selected, and it is equal to 0 otherwise. The overall customer satisfaction for the customers in market segment $t, O C S_{t}$, can be expressed as

$$
\begin{equation*}
O C S_{t}=\sum_{j=1}^{J} \sum_{k=1}^{K} S_{j k t}=\sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{i=1}^{I} w_{i t} r_{i j t} s_{i j k t} x_{j k t} \tag{2}
\end{equation*}
$$

Assuming that the overall customer satisfaction of the whole market, $O C S_{w}$, is the weighted sum of each $O C S_{t}$ over the multi-segment market, the objective function of this optimization problem can be formulated as

$$
\begin{equation*}
O C S_{w}=\sum_{t=1}^{T} \xi_{t} O C S_{t}=\sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{i=1}^{I} \xi_{t} w_{i t} r_{i j t} s_{i j k t} x_{j k t} \tag{3}
\end{equation*}
$$

where ξ_{t} is the normalized weight of the importance of market segment $t\left(0 \leq \xi_{t} \leq 1\right.$ and $\left.\sum_{t=1}^{T} \xi_{t}=1\right)$.

If the number of customers in market segment t is estimated according to historical sales data of a firm, ξ_{t} can be obtained as

$$
\begin{equation*}
\xi_{t}=q_{t} / \sum_{t=1}^{T} q_{t} \tag{4}
\end{equation*}
$$

where q_{t} is the estimated number of customers in market segment t.

2.2 Formulating the Development Budget Constraint

Various resources including technical engineers, advanced equipment, tools and other facilities are required to support the design of a new product. From the standpoint of strategic planning, these types of resources can be represented in financial terms. Assuming that the cost of attaining alternative k of TA j in market segment $t, T A_{j k t}$, is $c_{j k t}$ and the cost
function for achieving the degree of attainment of $T A_{j k t}$ is scaled linearly to the degree of $x_{j k t}$, the budget constraint can be described as

$$
\begin{equation*}
\sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{k=1}^{K} c_{k j t} x_{j k t} \leq B \tag{5}
\end{equation*}
$$

where B is the budget for the development of the product over the multi-segment market.

2.3 Optimization Model

The problem of selecting a set of alternatives of TAs for each segment in a multi-segment market so as to maximize the OCS of the multi-segment market while not exceeding budget available for the multi-segment market can be formulated as a multiple choice $0-1$ knapsack problem.

Problem (P)

$$
\begin{align*}
\max \quad O C S_{w}= & \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{i=1}^{I} \xi_{t} w_{i t} r_{i j t} s_{i j k t} x_{j k t} \tag{6}\\
\text { s.t. } \quad & \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{k=1}^{K} c_{j k t} x_{j k t} \leq B \tag{7}\\
& \sum_{k=1}^{K} x_{j k t}=1 \quad \text { for all } j, t \tag{8}\\
& x_{j k t} \in\{0,1\} \quad \text { for all } j, k, t \tag{9}
\end{align*}
$$

In the formulation of Problem (P), the objective function (6) maximizes the OCS for the multi-segment market; the budget constraint (7) indicates that the capital consumption by the selected alternatives cannot exceed the available budget for the multi-segment market; the alternative selection constraint set (8) forces the problem to choose one and only one alternative for each TA in any market segment; and the constraint set (9) imposes the integrality of the decision variables.

2.4 Optimization Model with Fuzzy Numbers

As mentioned previously in this paper, the customer satisfaction level for CR i acquired by $T A_{j k t}, s_{i j k t}$, and related cost, $c_{j k t}$, are assumed to be imprecise since these data are usually determined based on the subjective judgement and/or vague knowledge of the experienced engineers.

Now, consider $s_{i j k t}$. The engineers should determine acceptable ranges of values for each $s_{i j k t}$, which is an interval $\left[s_{i j k t}-\Delta_{i j k t 1}, s_{i j k t}+\Delta_{i j k t 2}\right], 0 \leq \Delta_{i j k t 1} \leq s_{i j k t}$ and $0 \leq \Delta_{i j k t 2}$. Then, they choose a value from the interval $\left[s_{i j k t}-\Delta_{i j k t 1}\right.$,
$\left.s_{i j k t}+\Delta_{i j k t 2}\right]$ as an estimate of each $s_{i j k t}$ ．We say that the acceptable grade is 1 if the estimate is exactly $s_{i j k t}$ ；otherwise， the acceptable grade will get smaller when the estimate ap－ proaches either $s_{i j k t}-\Delta_{i j k t 1}$ or $s_{i j k t}+\Delta_{i j k t 2}$ ．It is clear that the acceptable grade for an estimate in an interval corre－ sponds to the membership grade of a fuzzy number in the fuzzy set．Thus，this leads to the use of fuzzy numbers．

Let $\tilde{s}_{j k t}$ be the fuzzy number denoted by

$$
\begin{align*}
& \tilde{s}_{i j k t}=\left(s_{i j k t}-\Delta_{i j k t 1}, s_{i j k t}, s_{i j k t}+\Delta_{i j k t 2}\right), \tag{10}\\
& 0 \leq \Delta_{i j k t 1}<s_{i j k t}, \quad 0<\Delta_{i j k t 2} \quad \text { for all } i, j, k, t
\end{align*}
$$

The membership function of $\tilde{s}_{i j k t}$ is as shown below ：

$$
\mu_{\tilde{s}_{i j k t}}(x)=\left\{\begin{array}{cc}
\frac{x-s_{i j k t}+\Delta_{i j k t 1}}{\Delta_{i j k t 1}}, & s_{i j k t}-\Delta_{i j k t 1} \leq x \leq s_{i j k t} \tag{11}\\
\frac{s_{i j k t}+\Delta_{i j k t 2}-x}{\Delta_{i j k t 2}}, & s_{i j k t} \leq x \leq s_{i j k t}+\Delta_{i j k t 2,} \\
0, & \text { otherwise }
\end{array}\right.
$$

＜Figure $1>$ shows that when an estimate x equals $s_{i j k t}$ ， the membership grade of x in $\tilde{s}_{i j k t}$ is 1 ．However，the more away from the position of $s_{i j k t}$ an estimate x is，the less membership grade of x in $\tilde{s}_{i j k t}$ is obtained．The representation of imprecise data as fuzzy numbers is useful when those data are used in fuzzy systems．

＜Figure 1〉 The Fuzzy Number $\tilde{s}_{i j k t}$

Now，consider the problem of ranking fuzzy numbers．We will use the signed distance ranking method，which was de－ fined in［24］for ranking the fuzzy numbers in this research．

Definition 1：The signed distance of b is defined by $d^{*}(b$, $0)=b, b, 0 \in R$ ．

The signed distance is described as follows．If $b>0, b$ lies to the right of the origin 0 and the distance between
b and 0 is denoted by $d^{*}(b, 0)=b$ ．Similarly，if $b<0, b$ lies to the left of the origin 0 and the distance between b and 0 is denoted by $-d^{*}(b, 0)=-b$ ．In summary，$d^{*}(b, 0)$ stands for the signed distance of b measured from the origin 0 ．

We can see in＜Figure $2>$ that a α－cut of the fuzzy number $\tilde{A}=(a, b, c)$ is an interval $\left[A_{L}(\alpha), A_{R}(\alpha)\right], 0 \leq \alpha \leq 1$ ， where $A_{L}(\alpha)$ and $A_{R}(\alpha)$ are the left endpoint and the right endpoint of the α－cut，respectively．The membership func－ tion of $\tilde{A}=(a, b, c)$ is as shown below ：

$$
\mu_{\tilde{A}}(x)=\left\{\begin{array}{cc}
(x-a) /(b-a), a \leq x \leq b \tag{12}\\
(c-x) /(c-b), & b \leq x \leq c, a<b<c \\
0, & \text { otherwise }
\end{array}\right.
$$

From（12）we have that $A_{L}(\alpha)=a+(b-a) \alpha$ and $A_{R}(\alpha)=$ $c-(c-b) \alpha$ ，where $A_{L}(\alpha)$ and $A_{R}(\alpha)$ are the signed dis－ tances measured from 0 ．From Definition 1，we have that $d^{*}\left(A_{L}(\alpha), 0\right)=A_{L}(\alpha)$ and $d^{*}\left(A_{R}(\alpha), 0\right)=A_{R}(\alpha), 0 \leq \alpha$ ≤ 1 ．Hence，the signed distance of the interval $\left[A_{L}(\alpha)\right.$ ， $\left.A_{R}(\alpha)\right]$ is defined by $d^{*}\left(\left[A_{L}(\alpha), A_{R}(\alpha)\right], 0\right)=\frac{1}{2}\left[d^{*}\left(A_{L}(\alpha)\right.\right.$, $\left.0)+d^{*}\left(A_{R}(\alpha), 0\right)\right]=\frac{1}{2}\left[A_{L}(\alpha), A_{R}(\alpha)\right]=\frac{1}{2}[a+c+(2 b-a$ $-c) \alpha$ ］．Since the function for α is continuous over the inter－ val，the integration can be used to obtain the mean of the signed distance，i．e． $\int_{0}^{1} d^{*}\left(\left[A_{L}(\alpha), A_{R}(\alpha)\right], 0\right) d \alpha=\frac{1}{2} \int_{0}^{1}[a$ $+c+(2 b-a-c) \alpha] d \alpha=\frac{1}{4}(2 b+a+c)$ ．In addition，for each $\alpha \in[0,1]$ ，there is a one－to－one mapping between the interval $\left[A_{L}(\alpha), A_{R}(\alpha)\right]$ and $\left[A_{L}(\alpha)_{\alpha}, A_{R}(\alpha)_{\alpha}\right]$ as shown in＜Figure $2>$ ，where $\left[A_{L}(\alpha)_{\alpha}, A_{R}(\alpha)_{\alpha}\right]$ is a fuzzy set on $R=(-\infty, \infty)$ ， $A_{L}(\alpha), A_{R}(\alpha) \in R$ and $0 \leq \alpha \leq 1$ ，which is called a level α fuzzy interval，if its membership function is as given below ：

$$
\mu_{\left[A_{L}(\alpha)_{\alpha}, A_{R}(\alpha)_{]}\right]}(x)= \begin{cases}\alpha, & A_{L}(\alpha) \leq x \leq A_{R}(\alpha) \tag{13}\\ 0, & \text { otherwise }\end{cases}
$$

〈Figure 2〉A α－cut of Fuzzy Number \tilde{A}
Thus，we have Definition 2 as follows．

Definition 2 : Let $\widetilde{A}=(a, b, c) \in F_{N}$, where $F_{N}=\{(a, b, c) \mid$ $\forall a \leq b \leq c, a, b, c \in R\}$. The signed distance of \tilde{A} measured from $\tilde{0}_{1}(y$-axis $)$ is defined by

$$
\begin{align*}
d\left(\tilde{A}, \tilde{0}_{1}\right) & =\int_{0}^{1} d\left(\left[A_{L}(\alpha)_{\alpha}, A_{R}(\alpha)_{\alpha}\right], \tilde{0}_{1}\right) d \alpha \\
& =\frac{1}{2} \int_{0}^{1}\left[A_{L}(\alpha)+A_{R}(\alpha)\right] d \alpha \\
& =\frac{1}{4}(2 b+a+c) \tag{14}
\end{align*}
$$

Thus, after defuzzyfying the fuzzy number $\tilde{s}_{i j k t}$ by Definition 2, we obtain an estimate of the customer satisfaction level for $\mathrm{CR} i$ acquired by $T A_{j k t}$ in the fuzzy sense from the interval $\left[s_{i j k t}-\Delta_{i j k t 1}, s_{i j k t}+\Delta_{i j k t 2}\right]$ as follows :

$$
\begin{equation*}
s_{i j k t}^{*}=d\left(\tilde{s}_{i j k t}, \tilde{0}_{1}\right)=s_{i j k t}+\frac{1}{4}\left(\Delta_{i j k t 2}-\Delta_{i j k t 1}\right) \tag{15}
\end{equation*}
$$

The engineers can then make use of this equation to obtain a value as an estimate of the customer satisfaction level for CR i acquired by $T A_{j k t}$ for solving the imprecise data problem.

Similarly, when fuzzifying the cost of $T A_{j k t}, c_{j k t}$, we obtain as follows :

$$
\begin{align*}
\tilde{c}_{j k t}= & \left(c_{j k t}-\Delta_{j k t 1}, c_{j k t}, c_{j k t}+\Delta_{j k t 2}\right) \tag{16}\\
& 0 \leq \Delta_{j k t 1}<c_{j k t}, 0<\Delta_{j k t 2} \\
& \text { for all } j, k, t
\end{align*}
$$

The membership function of $\tilde{c}_{j k t}$ is as shown below :

$$
\mu_{\tilde{c}_{j k t}}(x)=\left\{\begin{array}{c}
\frac{x-c_{j k t}+\Delta_{j k t 1}}{\Delta_{j k t 1}}, c_{j k t}-\Delta_{j k t 1} \leq x \leq c_{j k t}, \tag{17}\\
\frac{c_{j k t}+\Delta_{j k t 2}-x}{\Delta_{j k t 2}}, c_{j k t} \leq x \leq c_{j k t}+\Delta_{j k t 2,} \\
0,
\end{array}\right.
$$

From definition 2, we obtain an estimate of the cost of $T A_{j k t}$ in the fuzzy sense from the interval $\left[c_{j k t}-\Delta_{j k t 1}, c_{j k t}\right.$ $+\Delta_{j k t 2}$] as follows :

$$
\begin{equation*}
c_{j k t}^{*}=d\left(\tilde{c}_{j k t}, \tilde{0}_{1}\right)=c_{j k t}+\frac{1}{4}\left(\Delta_{j k t 2}-\Delta_{j k t 1}\right) \tag{18}
\end{equation*}
$$

The engineers can also obtain a value as an estimate of the cost of $T A_{j k t}$ by using equation (18) to solve the fuzzy problem considered in this study.

From Problem (P) and Definition 2, the defuzzified Problem (P) in the fuzzy sense is formulated as follows :

Problem (Q)

$$
\begin{align*}
\max O C S_{w}= & \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{i=1}^{I} \xi_{t} w_{i t} r_{i j t} s_{i j k t}^{*} x_{j k t} \tag{19}\\
\text { s.t. } \quad & \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{k=1}^{K} c_{j k t}^{*} x_{j k t} \leq B \tag{20}\\
& \sum_{k=1}^{K} x_{j k t}=1 \quad \text { for all } j, t \tag{21}\\
& x_{j k t} \in\{0,1\} \quad \text { for all } j, k, t \tag{22}
\end{align*}
$$

where,
$s_{i j k t}^{*}=s_{i j k t}+\frac{1}{4}\left(\Delta_{i j k t 2}-\Delta_{i j k t 1}\right), 0 \leq \Delta_{i j k t 1}<s_{i j k t}, 0 \leq \Delta_{i j k t 2}$,
$c_{j k t}^{*}=c_{j k t}+\frac{1}{4}\left(\Delta_{j k t 2}-\Delta_{j k t 1}\right), \quad 0 \leq \Delta_{j k t 1}<c_{j k t}, 0 \leq \Delta_{j k t 2}$,

3. An Illustrative Example

In order to illustrate the application of the proposed approach in this research, a simple example modified from Yoo. (2015) is used [25]. The problem for the application is to determine the optimal levels of the TAs of a washing machine according to the CRs in the two market segments, in which it is assumed that customer satisfaction level and cost for each TA's alternative are imprecise. To handle these imprecise data and/or information, the proposed approach in this research using some basic definitions of fuzzy sets and the signed distance method for ranking fuzzy numbers are applied to the example. To compare the results from this example with the one from the example used in [25], fuzzy and crisp numbers for customer satisfaction level and cost for each TA's alternative are used for this example.

According to the market survey in [25], the customers of the washing machine for the two market segments have five CRs as their biggest concern for the product which are "thorough washing", "quiet washing", "thorough rinsing", "less damage to clothes" and "short washing time". From the viewpoint of engineer's design of the washing machine, five TAs are also identified to satisfy the five CRs, i.e. "washing quality (\%)", "noise level (dB)", "washing time $(\mathrm{min}) "$ ", "rinsing quality (\%)" and "clothes damage rate (\%)." In this example, each TA has three alternatives. The relation-
ship between CRs and TAs, the relative importance of CRs, and the alternatives of each TA and corresponding customer satisfaction information for the market segment 1 and 2 are showed in the HoQs in <Table 1> and <Table 2>, respectively. Since the customer satisfaction level for each TA's alternative are assumed to be imprecise in this example, fuzzy numbers are used. To put these fuzzy numbers in the HoQ template, the range of the customer satisfaction levels for each alternative of TAs determined by the experienced engineers, $\Delta_{i j k t 1}$ and $\Delta_{i j k t 2}$ for $s_{i j k t 1}$, for all i, j, k, t, as well as the estimates of the customer satisfaction levels obtained by using $s_{i j k t}^{*}=s_{i j k t}+\frac{1}{4}\left(\Delta_{i j k t 2}-\Delta_{i j k t 1}\right)$, for all i, j, k, t, are also shown in $<$ Table $1>$ and $<$ Table $2>$ for the two segments, respectively. <Table 1> and <Table 2> also include the crisp numbers for the customer satisfaction level for each TA's alternative for the two segments, respectively.

The cost information related to the TAs' alternatives and the total budget for the two market segments are given as follows. As the costs for each TA's alternative are also assumed to be imprecise in this example, the range for these costs, $\Delta_{j k t 1}$ and $\Delta_{j k t 2}$ for $c_{j k t}$, for all j, k, t, as well as the estimates of the costs obtained by using $c_{j k t}^{*}=c_{j k t}+\frac{1}{4}$ $\left(\Delta_{j k t 2}-\Delta_{j k t 1}\right)$ for all j, k, t, are shown in <Table $3>$ and <Table 4> for the two segments, respectively including the crisp numbers for $c_{j k t}$, for all j, k, t, The accumulative customer satisfaction level achieved by each TA alternative for the two market segments is also shown in <Table 3> and <Table 4> for both cases of crisp numbers and fuzzy numbers. The total budget is assumed to be 24 . We also assume that the numbers of customers in the two market segments, q_{1} and q_{2}, were estimated as 12,000 and 9,000 , respectively. These data are used to represent the importance of the two market segments.

Based on these data given in this example, Problem (P) and Problem (Q) which are the crisp model in [25] and the fuzzy model, respectively are formulated as follows :

Problem (P)

$$
\begin{aligned}
\max & 0.1475 x_{111}+0.1716 x_{121}+0.1823 x_{131}+0.0769 x_{211}+0.0550 x_{221} \\
& +0.0335 x_{231}+0.0497 x_{311}+0.0425 x_{321}+0.0357 x_{331}+0.1444 x_{411} \\
& +0.1130 x_{421}+0.0766 x_{431}+0.0829 x_{511}+0.0819 x_{521}+0.0782 x_{531} \\
& +0.0945 x_{112}+0.0994 x_{122}+0.1036 x_{132}+0.0014 x_{212}+0.0020 x_{222} \\
& +0.0029 x_{232}+0.0593 x_{312}+0.0612 x_{322}+0.0635 x_{332}+0.0660 x_{412}
\end{aligned}
$$

$$
\begin{aligned}
& \\
& \\
& \text { s.t. } \\
& \\
& 3 x_{111}+4 x_{121}+5 x_{132}+0.1132 x_{432}+0.0903 x_{512}+0.0964 x_{522}+0.1083 x_{532} \\
& \\
& +1 x_{331}+3 x_{411}+2 x_{421}+1 x_{431}+4 x_{511}+2 x_{521}+4 x_{311}+2 x_{531}+3 x_{112} \\
& +4 x_{122}+5 x_{132}+3 x_{212}+4 x_{222}+5 x_{232}+1 x_{312}+2 x_{322}+3 x_{332} \\
& +1 x_{412}+2 x_{422}+4 x_{432}+1 x_{512}+2 x_{522}+3 x_{532} \leq 24 \\
& x_{111}+x_{121}+x_{131}=1 \\
& x_{211}+x_{221}+x_{231}=1 \\
& x_{311}+x_{321}+x_{331}=1 \\
& x_{411}+x_{421}+x_{431}=1 \\
& x_{511}+x_{521}+x_{531}=1 \\
& x_{112}+x_{122}+x_{132}=1 \\
& x_{212}+x_{222}+x_{232}=1 \\
& x_{312}+x_{322}+x_{332}=1 \\
& x_{412}+x_{422}+x_{432}=1 \\
& x_{512}+x_{522}+x_{532} \leq=1 \\
& x_{j k t} \in\{0,1\} \quad \text { for all } j, k, t
\end{aligned}
$$

Problem (Q)
$\max 0.153 x_{111}+0.1700 x_{121}+0.1820 x_{131}+0.07693 x_{211}+0.05365 x_{221}$ $+0.04082 x_{231}+0.0499 x_{311}+0.0427 x_{321}+0.0363 x_{331}+0.1447 x_{411}$ $+0.1144 x_{421}+0.0823 x_{431}+0.0815 x_{511}+0.0800 x_{521}+0.0793 x_{531}$ $+0.0950 x_{112}+0.0988 x_{122}+0.1043 x_{132}+0.0015 x_{212}+0.0021 x_{222}$ $+0.0029 x_{232}+0.0598 x_{312}+0.0614 x_{322}+0.0644 x_{332}+0.0677 x_{412}$ $+0.0804 x_{422}+0.1130 x_{432}+0.0867 x_{512}+0.0927 x_{522}+0.1027 x_{532}$
s.t. $\quad 2.7425 x_{111}+3.9825 x_{121}+5.0575 x_{131}+5.0625 x_{211}+3.0825 x_{221}$ $+1.775 x_{231}+4.07 x_{311}+2.23 x_{321}+1.2425 x_{331}+2.6025 x_{411}$ $+2.36 x_{421}+1.155 x_{431}+4.21 x_{511}+2.08 x_{521}+1.035 x_{531}$ $+3.025 x_{112}+4.495 x_{122}+4.58 x_{132}+2.84 x_{212}+3.585 x_{222}$ $+5.26 x_{232}+1.1225 x_{312}+1.9425 x_{322}+2.595 x_{332}+0.8475 x_{412}$ $+1.835 x_{422}+3.7075 x_{432}+1.225 x_{512}+2.1775 x_{522}$ $+2.645 x_{532} \leq 24$
$x_{111}+x_{121}+x_{131}=1$
$x_{211}+x_{221}+x_{231}=1$
$x_{311}+x_{321}+x_{331}=1$
$x_{411}+x_{421}+x_{431}=1$
$x_{511}+x_{521}+x_{531}=1$
$x_{112}+x_{122}+x_{132}=1$
$x_{212}+x_{222}+x_{232}=1$
$x_{212}+x_{222}+x_{232}=1$
$x_{312}+x_{322}+x_{332}=1$
$x_{412}+x_{422}+x_{432}=1$
$x_{512}+x_{522}+x_{532}=1$
$x_{j k t} \in\{0,1\} \quad$ for all j, k, t
<Table 1〉 The HoQ for Market Segment 1

Customer Requirement	Weight	Washing Quality (\%)					Noise Level (dB)					Washing Time (min)					Rinsing Quality (\%)					Clothes Damage Rate (\%)				
		$\begin{aligned} & \text { Relationship } \\ & \text { bet CR i \& TA } j \end{aligned}$					Relationship bet CR i \& TA j					$\begin{aligned} & \text { Relationship } \\ & \text { bet CR i \& TA } j \end{aligned}$					$\begin{aligned} & \text { Relationship } \\ & \text { bet CR i \& TA j } \end{aligned}$					$\begin{aligned} & \text { Relationship } \\ & \text { bet CR i \& TA j } \end{aligned}$				
		Value	Satisfaction Level				Value	Satisfaction Level				Value	Satisfaction Level				Value	Satisfaction Level				Value	Satisfaction Level			
					Fuzzy			Crisp	Fuzzy																	
				$(\triangle 1$,	$\triangle 2)$	$S_{i j k t}^{*}$			$(\triangle 1$,	$\triangle 2)$	$S_{i j k t}^{*}$			$(\triangle 1$,	$\triangle 2)$	$S_{i j k t}^{*}$				\triangle 2)	$S_{i j \text { kt }}^{*}$			$(\triangle 1$,	$\triangle 2)$	$S_{i j k t}^{*}$
Thorough washing	0.313	0.3125					0					0.0625					0.3125					0.3125				
		90	0.65	0.01	0.34	0.73	45	0	0	0	0.00	30	0.8	0.1	0.19	0.82	95	1	0	0	1.00	0.5	0.8	0.27	0.17	0.78
		95	0.85	0.09	0.1	0.85	50	0	0	0	0.00	35	0.9	0.12	0.1	0.90	90	0.7	0.23	0.28	0.71	0.7	0.9	0.27	0.09	0.86
		98	1	0	0	1.00	60	0	0	0	0.00	40	1	0	0	1.00	80	0.4	0.02	0.07	0.41	1	1	0	0	1.00
Quiet Washing	0.25	0.3					0.5					0.1					0.1					0				
		90	1	0	0	1.00	45	1	0	0	1.00	30	1	0	0	1.00	95	0.85	0.09	0.14	0.86	0.5	0	0	0	0.00
		95	0.8	0.23	0.17	0.79	50	0.7	0.25	0.18	0.68	35	0.9	0.16	0.08	0.88	90	0.9	0.25	0.05	0.85	0.7	0	0	0	0.00
		98	0.7	0.13	0.27	0.74	60	0.4	0.07	0.48	0.50	40	0.6	0.19	0.29	0.63	80	1	0	0	1.00	1	0	0	0	0.00
Thorough rinsing	0.188	0.3					0					0.1					0.5					0.1				
		90	0.5	0.06	0.08	0.51	45	0	0	0	0.00	30	1	0	0	1.00	95	1	0	0	1.00	0.5	1	0	0	1.00
		95	0.9	0.07	0.09	0.91	50	0	0	0	0.00	35	0.6	0.19	0.2	0.60	90	0.8	0.08	0.14	0.82	0.7	0.9	0.08	0.09	0.90
		98	1	0	0	1.00	60	0	0	0	0.00	40	0.5	0.3	0.01	0.43	80	0.4	0.11	0.44	0.48	1	0.8	0.06	0.12	0.82
Less damage to clothes	0.125	0.231					0.077					0.077					0.231					0.384				
		90	1	0	0	1.00	45	1	0	0	1.00	30	1	0	0	1.00	95	1	0	0	1.00	0.5	1	0	0	1.00
		95	0.8	0.07	0.14	0.82	50	0.9	0.09	0.05	0.89	35	0.9	0.09	0.09	0.90	90	0.6	0.18	0.27	0.62	0.7	0.8	0.08	0.14	0.82
		98	0.7	0.09	0.06	0.69	60	0.9	0.09	0.07	0.90	40	0.8	0.09	0.19	0.83	80	0.5	0.33	0.48	0.54	1	0.5	0.12	0.25	0.53
Short washing time	0.125	0.714					0					0.143					0.143					0				
		90	0.7	0.23	0.29	0.72	45	0	0	0	0.00	30	1	0	0	1.00	95	0.6	0.26	0.31	0.61	0.5	0	0	0	0.00
		95	0.9	0.09	0.1	0.90	50	0	0	0	0.00	35	0.8	0.01	0.2	0.85	90	0.8	0.1	0.17	0.82	0.7	0	0	0	0.00
		98	1	0	0	1.00	60	0	0	0	0.00	40	0.6	0.01	0.39	0.70	80	1	0	0	1.00	1	0	0	0	0.00

<Table 2> The HoQ for Market Segment 2

<Table 3〉 Cost and Customer Satisfaction Level for Market Segment 1

Washing Quality	Value (\%)			90	95	98
	Cost		Crisp	3	4	5
			c*	2.7425	3.9825	5.0575
		Fuzz	$(\triangle 1, \Delta 2)$	1.12, 0.09	0.12, 0.05	1.67, 1.9
	Accumulative Satisfaction	Crisp		0.1475	0.1716	0.1823
		Fuzzy		0.1530	0.1700	0.1820
Noise Level	Value (db)			45	50	60
	Cost	Crisp		5	3	2
		Fuzzy	c*	5.0625	3.0825	1.775
			$(\triangle 1, \Delta 2)$	1.67, 1.92	0.06, 0.39	0.91, 0.01
	Accumulative Satisfaction	Crisp		0.0769	0.0550	0.0335
		Fuzzy		0.07693	0.05365	0.04082
Washing Time	Value (min)			30	35	40
	Cost	Crisp		4	2	1
		Fuzzy	C*	4.07	2.23	1.2425
			$(\triangle 1, \Delta 2)$	0.81, 1.09	0.03,0.95	0.08, 1.05
	Accumulative Satisfaction	Crisp		0.0497	0.0425	0.0357
		Fuzzy		0.0499	0.0427	0.0363
Rinsing Quality	Value (\%)			95	90	80
	Cost	Crisp		3	2	1
		Fuzzy	c*	2.6025	2.36	1.155
			$(\triangle 1, \Delta 2)$	1.59, 0	0.01, 1.45	0.33, 0.95
	Accumulative Satisfaction	Crisp		0.1444	0.1130	0.0766
		Fuzzy		0.1447	0.1144	0.0823
Clothes Damage Rate	Value (\%)			0.5	0.7	1
	Cost	Crisp		4	2	1
			C*	4.21	2.08	1.035
		Fuzzy	$(\triangle 1, \Delta 2)$	0.14, 0.98	0.23, 0.55	0.03, 0.17
	Accumulative Satisfaction		Crisp	0.0829	0.0819	0.0782
			Fuzzy	0.0815	0.0800	0.0793

From Problem (P) and Problem (Q), the optimal solutions of Problem (P) (crisp model) and Problem (Q) (fuzzy model) are obtained using MS Excel Solver as shown in <Table 5>. All the optimal solutions for these two problems are the same except four decision variables which are x_{221}, x_{231}, x_{112}, and x_{122}. In Problem (P), $x_{221}=1, x_{231}=0, x_{112}=1$, and $x_{122}=0$, while $x_{221}=0, x_{231}=1, x_{112}=0$, and $x_{122}=1$ in Problem (Q). Thus, it is showed in <Table 6> that the optimal solutions for the two problems mean that for both crisp model and fuzzy model, 95% is taken as level for washing quality, 40 min for washing time, 95% for rinsing quality, and 1% for clothes damage rate in segment 1 , and 54 dB for noise level, 39 min for washing time, 85% for rinsing quality, and 1% for clothes damage rate in segment 2 , while noise level in segment 1 takes 50 dB and 60 dB for crisp and
<Table 4〉 Cost and Customer Satisfaction Level for Market Segment 2

Washing Quality	Value (\%)			92	94	96
	Cost	Crisp		3	4	5
		Fuzzy		3.025	4.495	4.58
			$(\triangle 1, \triangle 2)$	0.56, 0.66	0.01, 1.99	1.69, 0.01
	Accumulative Satisfaction	Crisp		0.0945	0.0994	0.1036
		Fuzzy		0.0950	0.0988	0.1043
Noise Level	Value (db)			54	50	46
	Cost	Crisp		3	4	5
		Fuzzy	C*	2.84	3.585	5.26
			$(\triangle 1, \triangle 2)$	1.65, 1.01	1.77, 0.11	0.41, 1.45
	Accumulative Satisfaction	Crisp		0.0014	0.0020	0.0029
		Fuzzy		0.0015	0.0021	0.0029
Washing Time	Value (min)			39	36	33
	Cost	Crisp		1	2	3
		Fuzzy	c*	1.1225	1.9425	2.595
			$(\triangle 1, \triangle 2)$	0.03, 0.52	0.42, 0.19	1.65, 0.03
	Accumulative Satisfaction	Crisp		0.0593	0.0612	0.0635
		Fuzzy		0.0598	0.0614	0.0644
Rinsing Quality	Value (\%)			81	83	85
	Cost	Crisp		1	2	4
		Fuzzy	C*	0.8475	1.835	3.7075
			$(\triangle 1, \triangle 2)$	0.67, 0.06	0.75, 0.09	1.23, 0.06
	Accumulative Satisfaction	Crisp		0.0660	0.0792	0.1132
		Fuzzy		0.0677	0.0804	0.1130
	Value (\%)			1	0.8	0.6
	Cost	Crisp		1	2	3
			C*	1.225	2.1775	2.645
		Fuzzy	$(\triangle 1, \triangle 2)$	0.01, 0.91	0.01, 0.72	1.49, 0.07
	Accumulative Satisfaction		Crisp	0.0903	0.0964	0.1083
			Fuzzy	0.0867	0.0927	0.1027

fuzzy model, respectively and washing quality in segment 2 takes 92% and 94% for crisp and fuzzy model, respectively.

Also, a comparison of the OCS obtained from the fuzzy model with that of the crisp case is given as follows:

$$
\frac{0.8271-0.8436}{0.8436} \times 100=-1.9559 \% \text {. }
$$

The OCS obtained from the fuzzy model may be slightly worse or better than that in the crisp case, depending on what values the ranges for the customer satisfaction level and the cost for each alternative of TAs have. The advantage of using the fuzzy model is that ranges for customer satisfaction levels and cost value of TAs' alternatives are allowed in the problem.
<Table 5〉 The Optimal Solutions of Problem (P) and (Q)

	Problem (P)	Problem (Q)
x_{111}	0	0
x_{121}	1	1
x_{131}	0	0
x_{211}	0	0
x_{221}	1	0
x_{231}	0	1
x_{311}	0	0
x_{321}	0	0
x_{331}	1	1
x_{411}	1	1
x_{421}	0	0
x_{431}	0	0
x_{511}	0	0
x_{521}	0	0
x_{531}	1	1
x_{112}	1	0
x_{122}	0	1
x_{132}	0	0
x_{212}	0	0
x_{222}	0	0
x_{232}	0	0
x_{312}	0	0
x_{322}	0	0
x_{332}	1	0
x_{412}	0	0
x_{422}	0	0
x_{432}	0	0
x_{512}	0	0
x_{522}	0	0
x_{532}	0	0
0^{2}	0	0
		0

4. Conclusions

This study deals with the more realistic situation in the QFD planning process where the values of TAs are taken as discrete as well as the ranges for customer satisfaction levels and cost value of TAs' alternatives are allowed since it is difficult to assign exact values to these data due to vague and/or imprecise information. In this research, the approach to deal with these imprecise data was proposed using some basic definitions of fuzzy sets and the signed distance method for ranking fuzzy numbers. By using the approach, the multiple choice 0-1 knapsack model for selecting a set of alternatives of TAs for each segment in a multi-segment market was extended to the fuzzy multiple choice $0-1$ knapsack model.

In order to illustrate the proposed approach in this study, the QFD optimization problem for a washing machine with five CRs and five TAs under the two market segments including the fuzzy numbers was introduced. It was shown from this example that the difference between the optimal solution from the fuzzy model and that from the crisp model may occur depending on what the set of values the ranges for the customer satisfaction level and the cost of TAs' alternatives have, as well as the advantage of using the fuzzy model is that the imprecise data are allowed in the problem.

As future research in this area, more constraints such as technical difficulty, developing time and precedence relation for TAs' alternatives may be added to the model. Also, it should be interesting to incorporate a fuzzy theory into the model with the additional constraints.
<Table 6〉Summarization of Results

Segments	Technical attributes	Crisp Model			Fuzzy Model		
		Alternatives	Customer satisfaction level	Cost	Alternatives	Customer satisfaction level	Cost
1	Washing quality (\%)	95\%	0.1716	4	95\%	0.1700	3.9825
	Noise level (dB)	50dB	0.0550	3	60dB	0.0408	1.7750
	Washing time (min)	40 min	0.0357	1	40 min	0.0363	1.2425
	Rinsing quality (\%)	95\%	0.1444	3	95\%	0.1447	2.6025
	Clothes damage rate (\%)	1\%	0.0782	1	1\%	0.0793	1.0350
2	Washing quality (\%)	92\%	0.0945	3	94\%	0.0950	3.0250
	Noise level (dB)	54 dB	0.0014	3	54 dB	0.0015	2.8400
	Washing time (min)	39 min	0.0593	1	39 min	0.0598	1.1225
	Rinsing quality (\%)	85\%	0.1132	4	85\%	0.1130	3.7075
	Clothes damage rate (\%)	1\%	0.0903	1	1\%	0.0867	1.2250
	OCS	0.8436			0.8271		

Acknowledgements

This work was supported by the Dong-A University research fund.

References

[1] Akao, Y., Quality function deployment: integrating customer requirements into product design, Cambridge, MA, Productivity Press, 1990.
[2] Buyukozkan, G., Feyzioglu, O., and Ruan, D., Fuzzy group decision-making to multiple preference formats in quality function deployment, Computers in Industry, 2007, Vol. 58, No. 5, pp. 392-402.
[3] Chen, L.H. and Ko, W.C., Fuzzy linear programming models for new product design using QFD with FMEA, Applied Mathematical Modelling, 2009, Vol. 33, No. 2, pp.633-647.
[4] Chen, L.H. and Ko, W.C., Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept, European Journal of Operations Research, 2010, Vol. 201, No. 2, pp. 619-632.
[5] Chen, L.H. and Weng, M.C., A fuzzy model for exploiting quality function deployment, Mathematical and Computer Modelling, 2003, Vol. 38, No. 5-6, pp. 559-570.
[6] Chen, Y.J., Tang, J., and Fung, R.Y.K., Fuzzy regres-sion-based mathematical programming model for quality function deployment, International Journal of Production Research, 2004, Vol. 42, pp. 1009-1027.
[7] Chen, Y., Fung, R.Y.K., and Tang, J., Fuzzy expected value modelling approach for determining target value of engineering characteristics in QFD, Int. J. Prod. Res., 2005, Vol. 43, No. 17, pp. 3583-3604.
[8] Delice, E.K. and Gungor, Z., Determining design requirements in QFD using fuzzy mixed-integer goal programming : application of a decision support system, International Journal of Production Research, 2013, Vol. 51, No. 21, pp. 6378-6396.
[9] Erol, I. and Ferrel, W.G., A methodology for selection problems with multiple, conflicting objectives and both qualitative and quantitative criteria, International Journal of Production Economics, 2003, Vol. 86, No. 3, pp. 187-199.
[10] Fung, R.Y.K., Tang, J., Tu, Y., and Wang, D., Product design resources optimization using a non-linear fuzzy
quality function deployment model, Int. J. of Production Research, 2002, Vol. 40, No. 3, pp. 585-599.
[11] Hauser, J.R. and Clausing, D., The house of quality, Harvard Business Review, 1988, Vol. 66, No. 3, pp. 6373.
[12] Kahraman, C., Ertay, T., and Buyukozkan, G., A fuzzy optimization model for QFD planning process using analytic network approach, European Journal of Operations Research, 2006, Vol. 171, No. 2, pp. 390-411.
[13] Karsak, E.E., Fuzzy multiple objective decision making approach to prioritize design requirements in quality function deployment, International Journal of Production Research, 2004a, Vol. 42, No. 18, pp. 3957-3974.
[14] Karsak, E.E., Fuzzy multiple objective programming framework to prioritize design requirements in quality function deployment, Computers and Industrial Engineering, 2004b, Vol. 47, pp. 149-163.
[15] Kaufmann, A. and Gupta, M.M., Introduction to fuzzy arithmetic theory and applications, van Nostrand Reinhold, New York, 1991.
[16] Kim, K.J., Moskowitz, H., Dhingra, A., and Evans, G., Fuzzy multicriteria models for quality function deployment, Eur. J. Oper. Res., 2000, Vol. 121, No. 3, pp. 504518.
[17] Lai, X., Xie, M., and Tan, K.C., Dynamic Programming for QFD Optimization, Quality and Reliability Engineering, 2005, Vol. 21, No. 8, pp. 769-780.
[18] Lin, F.T. and Yao, J.S., Using fuzzy numbers in knapsack problems, European Journal of Operations Research, 2001, Vol. 135, pp. 158-176.
[19] Liu, S.H., Rating Design Requirements in fuzzy quality function deployment via a mathematical programming approach, International Journal of Production Research, 2005, Vol. 43, No. 3, pp. 497-513.
[20] Sener, Z. and E. E. Karsak, A decision model for setting target levels in quality function deployment using nonlinear programming-based fuzzy regression and optimization, The International Journal of Advanced Manufacturing Technology, 2010, Vol. 48, pp. 1173-1184.
[21] Sohn, S.Y. and Choi, I.S., Fuzzy QFD for supply chain management with reliability consideration, Reliability Engineering and System Safety, 2001, Vol. 72, No. 3, pp. 327-334.
[22] Tang, J., Richard, Y.K., Baodong, X., and Wang, D., A new approach to quality function deployment planning with financial consideration, Computers and Ope-
rations Research, 2002, Vol. 29, pp. 1447-1463.
[23] Vanegas, L.V. and Labib, A.W., Fuzzy Quality function deployment Model for deriving optimum targets, International Journal of Production Research, 2001, Vol. 39, No. 2, pp. 99-120.
[24] Yao, J.S. and Wu, K.M., Ranking fuzzy numbers based on decomposition principle and signed distance, Fuzzy Sets and Systems, 2000, Vol. 116, pp. 275-288.
[25] Yoo, J., Dynamic programming approach for determining optimal levels of technical attributes in QFD under multi-segment market, Journal of Society of Korea Industrial and Systems Engineering, 2015, Vol. 38, No. 2, pp. 120-128.
[26] Yu, E.J. and Kwak, C., Service Development using Fuzzy QFD in the banking industry, Journal of the Korean Society for Quality Management, 2015, Vol. 43, No. 1, pp. 103-124.
[27] Zhou, M., Fuzzy logic and optimization models for implementing QFD, Computers and Industrial Engineering, 1998, Vol. 35, No. 1-2, pp. 237-240.
[28] Zimmermann, H.-J., Fuzzy Set Theory and its Application, Fourth Edition, Springer Science+Business Media, LLC, New York, 2001.

ORCID
Jaewook Yoo | https://orcid.org/0000-0003-0110-9107

