• Title/Summary/Keyword: Importance Grid

Search Result 141, Processing Time 0.022 seconds

Importance and Satisfaction of Human and Physical Evidence Service in Korean Restaurants for Foreigners Living in Busan according to Nationality (부산체류 외국인의 국적별 한식당의 인적 및 물리적 서비스에 대한 중요도와 만족도)

  • Lee, Kyung-A;Lyu, Eun-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.2
    • /
    • pp.270-277
    • /
    • 2012
  • The purpose of this study was to evaluate the importance and satisfaction level foreigners place on human and physical evidence service in Korean restaurants based on nationality such as American/European, Japanese, Chinese, and Southeast Asian. The research was performed by using questionnaires conducted from August to September on 365 foreigners living in Busan. Total mean scores for the importance (3.96/5.00) and satisfaction (3.33/5.00) of Korean restaurant human and physical evidence service were significantly different (p<0.01), as the gap was -0.63. The mean scores of the gap were -1.03 for cleanliness of dining area, -1.01 for cleanliness of tableware, and -0.95 for easily understandable menu board. The mean scores of satisfaction for Southeast Asian individuals (3.77) were significantly (p<0.01) higher than those of American/European (3.40), Chinese (3.37), and Japanese (2.81). The importance and satisfaction grid showed that an easily understandable menu board and a brief description of the food or menu scored high for the importance and low for the satisfaction in American/European, Chinese, and Japanese individuals. Cleanliness of the dining area, cleanliness of tableware, cleanliness of staff appearance, kindness of employees, rapid resolution of complaints, and prompt and quick service scored high for importance and low for satisfaction in Japanese. However, Southeast Asians were satisfied with human and physical evidence service of Korean restaurants.

Determination of the Temperature Increasing Value of Seedling Nursery Period for Oryza2000 Model to Applicate Grid Weather Data (Oryza2000 모형 활용을 위한 육묘기 보온 상승온도 결정)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Kwon, Dongwon;Lee, Yunho;Cho, Jung-Il;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • Spatial simulation of crop growth often requires application of management conditions to each cell. In particular, it is of great importance to determine the temperature conditions during the nursery period for rice seedlings, which would affect heading date projections. The objective of this study was to determine the value of TMPSB, which is the parameter of ORYZA2000 model to represent temperature increase under a plastic tunnel during the rice seedling periods. Candidate values of TMPSB including 0℃, 2℃, 5℃, 7℃ and 9℃ were used to simulate rice growth and yield. Planting dates were set from mid-April to mid-June. The simulations were performed at four sites including Cheorwon, Suwon, Seosan, and Gwangju where climate conditions at rice fields common in Korea can be represented. It was found that the TMPSB values of 0℃ and 2℃ resulted in a large variation of heading date due to low temperature occurred in mid-April. When the TMPSB value was >7℃, the variation of heading date was relatively small. Still, the TMPSB value of 5℃ resulted in the least variation of heading date for all the planting dates. Our results suggested that the TMPSB value of 5℃ would help reasonable assessment of climate change impact on rice production when high resolution gridded weather data are used as inputs to ORYZA2000 model over South Korea.

A Study on the Safety Characterization Grounding Design of the Inner Photovoltaic System (태양광 발전단지 내부 그리드의 안전 특성화 접지 설계에 관한 연구)

  • Kim, Hong-Yong;Yoon, Suk-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.130-140
    • /
    • 2018
  • Purpose: In this paper, we propose a design technique for the safety characterization grounding in the construction of the photovoltaic power generation complex which can be useful and useful as an alternative power energy source in our society. In other words, we will introduce the application of safety grounding for each application, which can improve and optimize the reliability of the internal grid from the cell module to the electric room in the photovoltaic power generation complex. Method: We analyze the earth resistivity of the soil in the solar power plant and use the computer program (CDEGS) to analyze the contact voltage and stratospheric voltage causing the electric shock, and propose the calculation and calculation method of the safety ground. In addition, we will discuss the importance of semi-permanent ground electrode selection in consideration of soil environment. Results: We could obtain the maximum and minimum value of ground resistivity for each of the three areas of the data measured by the Wenner 4 - electrode method. The measured data was substituted into the basic equation and calculated with a MATLAB computer program. That is, it can be determined that the thickness of the minimum resistance value is the most favorable soil environment for installing the ground electrode. Conclusion: Through this study, we propose a grounding system design method that can suppress the potential rise on the ground surface in the inner grid of solar power plant according to each case. However, the development of smart devices capable of accumulating big data and a monitoring system capable of real-time monitoring of seismic changes in earth resistances and grounding systems should be further studied.

A Study on Technology Transfer in IT Industry (IT 산업계의 기술이전에 관한 연구)

  • Sung, Tae-Kyung
    • Management & Information Systems Review
    • /
    • v.28 no.3
    • /
    • pp.45-68
    • /
    • 2009
  • The Korean government is actively pursuing an ambitious IT strategy to establish Korea as one of the leaders in the world IT market. To implement the strategy, successful technology transfer from research institutions to market should be achieved. Comprehensive literature identifies sixteen variables affecting the process and results of technology transfer. The research results in four key factors in technology transfer: Communication, Distance, Equivocality, and Motivation. Communication refers to the degree to which a medium is able to efficiently and accurately conveys task-relevant information and media while distance involves both physical and cultural proximity. Equivocality refers to the degree of concreteness of technology to be transferred while motivation involves incentives for and the recognition of the importance of technology transfer activities. Further analysis shows that there are four distinctive clusters and they show very contrasting characteristics in terms of four key factors. The careful mapping of the four clusters on the four key factors show very informative technology transfer patterns, the Technology Transfer Grid.

  • PDF

Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation (CAE 알고리즘을 이용한 레이더 강우 보정 평가)

  • Jung, Sungho;Oh, Sungryul;Lee, Daeeop;Le, Xuan Hien;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.453-462
    • /
    • 2021
  • As the frequency of localized heavy rainfall has increased during recent years, the importance of high-resolution radar data has also increased. This study aims to correct the bias of Dual Polarization radar that still has a spatial and temporal bias. In many studies, various statistical techniques have been attempted to correct the bias of radar rainfall. In this study, the bias correction of the S-band Dual Polarization radar used in flood forecasting of ME was implemented by a Convolutional Autoencoder (CAE) algorithm, which is a type of Convolutional Neural Network (CNN). The CAE model was trained based on radar data sets that have a 10-min temporal resolution for the July 2017 flood event in Cheongju. The results showed that the newly developed CAE model provided improved simulation results in time and space by reducing the bias of raw radar rainfall. Therefore, the CAE model, which learns the spatial relationship between each adjacent grid, can be used for real-time updates of grid-based climate data generated by radar and satellites.

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.

A Study on Competency Evaluation and Improvement Plan of Electrical Construction Management Using Importance-Performance Analysis (IPA를 활용한 전기공사 건설사업관리 역량 평가 및 개선방안 연구)

  • Kim, Seungbeum;Byun, Jeongyoon;Kim, Juhyung;Kim, Jaejun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.103-112
    • /
    • 2014
  • Since recent construction projects become larger and complicated, the level of difficulty of management skill is rising, and the risk is increasing accordingly so the necessity of improving management skill of projects is increasing. In order to solve this problem, Construction Management system was preferentially introduced in construction projects but in case of domestic construction industry, separate contracts by business boundary are being made so the actual state is that the function of the Construction Management system is not properly operated over the overall projects. The partial operation of Construction Management system like this may impose many restrictions on converged and combined projects such as smart grid and intelligent buildings etc. in the future. For improvement of management skill of domestic construction projects, the competence of project management skill by work areas that can overcome heterogeneity of the current project management skill shall be secured, and any factor that impedes cooperation ability shall be found and that shall be solved. Therefore, the difference of work competency of project management system of construction and electrical construction is to be analyzed by utilizing IPA model in this study, and a plan to introduce the project management system of electrical construction for efficient operation of projects is to be looked into.

KASS Message Scheduler Design

  • Yun, Youngsun;Lee, Eunsung;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.193-202
    • /
    • 2016
  • The Korea Augmentation Satellite System (KASS), which is under development in Korea as a Satellite Based Augmentation System (SBAS) is expected to broadcast SBAS messages to air space in Korea according to the international standards defined by the International Civil Aviation Organization (ICAO) and the Radio Technical Commission for Aeronautics (RTCA). Around 13 SBAS messages are broadcast in every second to transmit augmentation information which can be applicable to a wide area in common. Each of the messages requires a different update interval and time-out according to the characteristics, purpose, and importance of transmitted information, and users should receive and combine multiple SBAS messages to calculate SBAS augmented information. Thus, a time to take acquiring first SBAS position by users differs depending on broadcasting various SBAS messages with which order and intervals. The present paper analyzes the considerations on message scheduling for broadcasting of KASS augmentation information and proposes a design of KASS message scheduler using the considerations. Compared to existing SBAS systems, which have a wide range of service area, a service area of the KASS is limited to Korea only. Thus, the numbers of ionosphere grid points and satellites to be augmented are expected to be smaller than those of existing SBAS. By reflecting this characteristic to the proposed design, shortening of broadcast interval of KASS message is verified compared to existing SBAS and a measure to increase a speed of acquisition of user navigation solution is proposed utilizing remaining message slots. The simulation result according to the proposed measure showed that the maximum broadcast interval can be reduced by up to 20% compared to that of existing SBAS, and users can acquire KASS position solution faster than existing SBAS.

Green-Split Coordination Strategy in Oversaturated Signal System (과포화교통상태에서의 SPLIT COORDINATION신호제어전략)

  • 이광훈
    • Journal of Korean Society of Transportation
    • /
    • v.11 no.1
    • /
    • pp.87-103
    • /
    • 1993
  • The subject this paper is the signal control strategy under oversaturated conditions. The nature of traffic control for oversaturation is essentially different from the standard control modes. While under non-saturated situation traffic control is needed for the sake of safety and efficiency, the throughput is essential under oversaturated conditions. Therefore berth objective and strategies differ. For an oversaturated stream the cycle time and the signal offset are thought to be of rather secondary importance. For this case the green split may well be the most important control variable to serve the excessive demand. Up to now, however, most efforts have concentrated on the strategy with the concept which lies just on the extension of Webster's. "Green-split Coordination Strategy for Over-Saturated Networks", presents newly contrived three types of strategies named Forward-coordination, Backward-coordination and Network-coordination respectively and describes the algorithms with the evaluations. The forward coordination strategy treats the forward wave of flow between two signals. The aim is to prevent the outbreak of queue due to the accumulation of temporary excess of demand in near-saturation or saturation flow. The backward coordination strategy treats the backward rave of flow between two signals. The goal is to prevent the waste of green time caused by the exit block at the upstream signal. for this purpose a feedback regulation is provided of the upstream green-split so that the inflow-outflow balance is kept zero. The resultant surplus of green time is alloted to other signal stages. Also here the examination is made of the appropriate value of the feedback control parameter. The network coordination strategy is operated to maximize the network throughput in a specific direction applying a bang-bang control at the bottleneck intersection. This is a type of intervenient control for policy reasons. For this strategy the green-split coordinations, particuarly the backward coordination, are essential as the tactical elements. In order to evaluate the preposed strategies those are compared with the latest existing strategy called saturation-degree-ratio control by the simulation experiments in an assumed 4$\times$4 grid network. The results are satisfactory showing a 10-15% reduction in delays and a 15% increase in network capacity.

  • PDF

A Display System of Realtime 3D Bathymetry Using Remote Sensing Exploration and Cloud Computing Technologies (원격탐사와 클라우드 컴퓨팅 기술을 활용한 실시간 3D 해저지형의 디스플레이 시스템)

  • Lee, Jong-Hoon;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.152-159
    • /
    • 2014
  • Recently. utilization of remote sensing exploration and cloud computing has been extended to efficient measurement, store, and update of bathymetry map data according to cloud computing technology. In the field of real ocean, water depth measurements and measurement data management, distribution, and display equipment for the development and dissemination have generated a lot of time and cost. To improve these problems, through real-time three-dimensional display system at this location, we can determine the importance of measurement activities, and reduce the time and cost of measurement activities. Data measured from marine probe vessels and remote sensing exploration equipments and other various channels can be handled and managed. In this paper, we propose a realtime three-dimensional display system through the depth measurements from remote sensing exploration. The proposed real-time three-dimensional display system can be effectively applied in the field of measurement of the topographical survey of the land as well as bathymetry of the sea.