Journal of the Korean Data and Information Science Society
/
v.25
no.3
/
pp.513-522
/
2014
Using the assumption that the price of a stock follows a geometric Brownian motion with constant volatility, Black and Scholes (BS) derived a formula that gives the price of a European call option on the stock as a function of the stock price, the strike price, the time to maturity, the risk-free interest rate, the dividend rate paid by the stock, and the volatility of the stock's return. However, implied volatilities of BS method tend to depend on the stock prices and the time to maturity in practice. To address this shortcoming, we estimate the implied volatility function as a function of the strike priceand the time to maturity for data consisting of the daily prices for KOSPI200 call options from January 2007 to May 2009 using support vector regression (SVR), the multiple additive regression trees (MART) algorithm, and ordinary least squaress (OLS) regression. In conclusion, use of MART or SVR in the BS pricing model reduced both RMSE and MAE, compared to the OLS-based BS pricing model.
Communications for Statistical Applications and Methods
/
v.17
no.2
/
pp.293-308
/
2010
In this paper, we examine the forecasting KOSPI 200 realized volatility by volatility measurements. The empirical investigation for KOSPI 200 daily returns is done during the period from 3 January 2003 to 29 June 2007. Since Korea Exchange(KRX) will launch VKOSPI futures contract in 2010, forecasting VKOSPI can be an important issue. So we analyze which volatility measurements forecast VKOSPI better. To test this hypothesis, we use 5-minute interval returns to measure realized volatilities. Also, we propose a new methodology that reflects the synchronized bidding and simultaneously takes it account the difference between overnight volatility and intra-daily volatility. The t-test and F-test show that our new realized volatility is not only different from the realized volatility by a conventional method at less than 0.01% significance level, also more stable in summary statistics. We use the correlation analysis, regression analysis, cross validation test to investigate the forecast performance. The empirical result shows that the realized volatility we propose is better than other volatilities, including historical volatility, implied volatility, and convention realized volatility, for forecasting VKOSPI. Also, the regression analysis on the predictive abilities for realized volatility, which is measured by our new methodology and conventional one, shows that VKOSPI is an efficient estimator compared to historical volatility and CRR implied volatility.
We estimate three continuous-time stochastic volatility models following the approach by Aït-Sahalia and Kimmel (2007) to compare the Korean and US stock markets. To do this, the Heston, GARCH, and CEV models are applied to the KOSPI 200 and S&P 500 Index. For the latent volatility variable, we generate and use the integrated volatility proxy using the implied volatility of short-dated at-the-money option prices. We conduct MLE in order to estimate the parameters of the stochastic volatility models. To do this we need the transition probability density function (TPDF), but the true TPDF is not available for any of the models in this paper. Therefore, the TPDFs are approximated using the irreducible method introduced in Aït-Sahalia (2008). Among three stochastic volatility models, the Heston model and the CEV model are found to be best for the Korean and US stock markets, respectively. There exist relatively strong leverage effects in both countries. Despite the fact that the long-run mean level of the integrated volatility proxy (IV) was not statistically significant in either market, the speeds of the mean reversion parameters are statistically significant and meaningful in both markets. The IV is found to return to its long-run mean value more rapidly in Korea than in the US. All parameters related to the volatility function of the IV are statistically significant. Although the volatility of the IV is more elastic in the US stock market, the volatility itself is greater in Korea than in the US over the range of the observed IV.
Journal of the Korea Academia-Industrial cooperation Society
/
v.12
no.12
/
pp.5671-5676
/
2011
Volatility Index is the index that represents future volatility of underlying asset implied in option price and expected value of market that measures the possibility of stock price's change expected by investors. The Korea Exchange announces a volatility Index, VKOSPI, since April, 13, 2009. This paper used daily data from January, 2002 through December, 2008 and tested power of Volatility index for future returns of portfolios sorted by size, book-to-market equity and beta. As a result, VKOSPI has the predictive power to future returns and then VKOSPI may be determinants of returns. Also if beta is included when sorting portfolio, the predictive power of VKOSPI is stronger for future portfolio returns.
Purpose - The purpose of this paper is to examine the connectedness between categorical economic policy uncertainty (monetary, fiscal, trade and foreign exchange policy uncertainty) indexes and option-implied volatility index in Korea, Japan and the US. Design/methodology/approach - This paper employs the Diebold-Ylmaz (2012) model based on a VAR and generalized forecast error variance decomposition. This paper also conducts regression analyses to investigate whether the volatility indexes are explained by categorical policy uncertainty indexes. Findings - First, we find the total connectedness is stronger in Korea and Japan relative to the US. Second, monetary, fiscal, and foreign exchange policy uncertainty indexes are connected to each other but trade policy uncertainty index is not. Third, the volatility index in Japan and the US is mainly associated with monetary policy uncertainty while the volatility index in Korea is explained by fiscal policy uncertainty index. Research implications or Originality - To our knowledge, this is the first study to investigate the connectedness among categorical policy uncertainty indexes and the volatility index in Korea, Japan, and the US. The empirical results on the connectedness suggest that transparent policy and communication with the market in one type of policy would reduce the uncertainty in other policies.
This paper examines empirically Durham's (2008) asset pricing models to the KOSPI200 index. This model Incorporates the VKOSPI index as a proxy for 1 month integrated volatility. This approach uses option prices to back out implied volatility states with an explicitly speci ed risk-neutral measure and risk premia estimated from the data. The application uses daily observations of the KOSPI200 and VKOSPI indices from January 2, 2003 to September 24, 2010. The empirical results show that non-affine model perform better than affine model.
This study addresses the question as to whether the option prices have useful predictive information on the direction of stock markets by investigating a forecasting power of volatility curvatures and skewness premiums implicit in S&P 500 index option prices traded in Chicago Board Options Exchange. We begin by estimating implied volatility functions and risk neutral price densities every minute based on non-parametric method and then calculate volatility curvature and skewness premium using them. The rationale is that high volatility curvature or high skewness premium often leads to strong bullish sentiment among market participants. We found that the rate of return on the signal following trading strategy was significantly higher than that on the intraday buy-and-hold strategy, which indicates that the S&P500 index option prices have a strong forecasting power on the direction of stock index market. Another major finding is that the information contents of S&P 500 index option prices disappear within one minute, and so one minute-delayed signal following trading strategy would not lead to any excess return compared to a simple buy-and-hold strategy.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.14
no.4
/
pp.249-273
/
2010
Often in practice, the implied volatility of an option is calculated to find the option price tomorrow or the prices of, nearby' options. To show that one does not need to adhere to the Black- Scholes formula in this scheme, Figlewski has provided a new pricing formula and has shown that his, alternating passive model' performs as well as the Black-Scholes formula [8]. The Figlewski model was modified by Henderson et al. so that the formula would have no static arbitrage [10]. In this paper, we show how to construct a huge class of such static no arbitrage pricing functions, making use of distortions, coherent risk measures and the pricing theory in incomplete markets by Carr et al. [4]. Through this construction, we provide a more elaborate static no arbitrage pricing formula than Black-Sholes in the above scheme. Moreover, using our pricing formula, we find a volatility curve which fits with striking accuracy the synthetic data used by Henderson et al. [10].
This paper presents a statistical machine learning method that generates the implied volatility surface under the rareness of the market data. We apply the practitioner's Black-Scholes model and Gaussian process regression method to construct a Bayesian inference system with observed volatilities as a prior information and estimate the posterior distribution of the unobserved volatilities. The variance instead of the volatility is the target of the estimation, and the radial basis function is applied to the mean and kernel function of the Gaussian process regression. We present two types of Gaussian process regression methods and empirically analyze them.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.