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ABSTRACT. Often in practice, the implied volatility of an option is calculated to find the option
price tomorrow or the prices of ‘nearby’ options. To show that one does not need to adhere to the
Black- Scholes formula in this scheme, Figlewski has provided a new pricing formula and has
shown that his ‘alternating passive model’ performs as well as the Black-Scholes formula [8].
The Figlewski model was modified by Henderson et al. so that the formula would have no static
arbitrage [10]. In this paper, we show how to construct a huge class of such static no arbitrage
pricing functions, making use of distortions, coherent risk measures and the pricing theory in
incomplete markets by Carr et al. [4]. Through this construction, we provide a more elaborate
static no arbitrage pricing formula than Black-Sholes in the above scheme. Moreover, using our
pricing formula, we find a volatility curve which fits with striking accuracy the synthetic data
used by Henderson et al. [10].

1. INTRODUCTION

Even though about 40 years have passed since its creation, the Black- Scholes formula is
probably the most widely used derivative pricing machine in financial markets. However, the
smile or skew phenomena force people to use the formula to varying capacities. Most prac-
titioners use the formula to predict the option price tomorrow or the nearby option prices by
finding today’s implied volatilities, and reinserting them into the equation. Implied volatility
can be calculated by allowing the volatility to be an unknown variable, equating the current
option price obtained from the data to the Black-Scholes price, and solving the equation for the
variable. If the Black-Scholes formula is correct, the implied volatility should be constant over
the strike price, or otherwise an arbitrage opportunity should exist.
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However, widely accepted is that neither of these is true. The arbitrage is risky and costly
[8], and the implied volatility consistently shows smile or skew. If the Black-Scholes model is
not accurate, the above prediction scheme should bear intrinsic errors or inconsistencies.

For example, to predict the option prices tomorrow of different strike prices, people find the
implied volatility of each option. Substituting the volatility into the Black-Scholes formula,
applicants find the option price tomorrow of the same strike price. Since constant volatility
is assumed over the strike price, this must be a misuse of the formula. Another example is
finding the best fit for the implied volatility to all strike prices. Then, the predicted prices
do not fit the data well. By showing that his ‘alternating passive model’ performs as well as
the Black-Scholes model, Figlewski first indicated that, if the Black-Scholes formula is used
in this way, the formula does not offer much advantage [8]. Henderson, Hobson, and Kluge
(which we will refer to as HHK) modified Figlewski’s idea so that the formula would have no
static arbitrage and confirmed the Figlewski’s results [10]. Moreover, they extended the model
to include maturity and discussed the existence of an informationally passive benchmark for
option pricing.

However, they did not provide a pricing formula which performs better than the Black-
Scholes formula in most instances. One factor emerges as that their aim was not to find the best
fit model, but rather to compare the Black-Scholes model against the simplest alternative model
satisfying static no arbitrages. Another factor seems to be that they did not have sufficient static
no arbitrage pricing formulas which indicated various shapes of volatility smiles and skews.
Their one parameter family of static no arbitrage formulas shows only smile, while the implied
volatility curve of the market data is close to skew, which must be a significant drawback of the
model.

The main purposes of our research are to find a different class of static no arbitrage pricing
formulas, with various volatility shapes, and to make an attempt to find the best fit model. We
also view the economical meaning or insight of the model in great detail, since the previous
models do not seem to provide such an aspect. Subsequently, a huge class of static no arbitrage
pricing formulas with plenty of smiles and skews can be found. Moreover, we find a volatility
curve which fits strikingly well to the synthetic data used in HHK (see Figure 5).

As pointed out in HHK, finding a static no arbitrage price formula is a ‘quite difficult’ task
and the task should be even more difficult if the formula is to have some insight. We circumvent
the situation via considering the distortion theory developed by Delbaen, Denneberg and Wang,
the coherent risk measures by Arzner et al., and the pricing technique of Carr, Geman and
Madan (which we will refer to as CGM) in incomplete markets [6], [13], [1], [4].

Our ideas rely on the assumption that the valuation measures of CGM can be generalized to
valuation functional, as defined in Definition 4.1. CGM begins by defining an acceptable op-
portunity, which is drastically weakened in meaning for an arbitrage opportunity. Most people
would accept an opportunity with mild risks, if the gains would adequately compensate for the
costs. To test whether a trading strategy is acceptable, CGM introduced a set of measures (test
and valuation measures) and associated floors, as well as non-positive numbers. An invest-
ment is acceptable if and only if the expected gain under each measure exceeds its associated
floor. The main contribution by CGM is proof of the first and second fundamental theorems,
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which demonstrates that under suitable conditions, the state pricing functions can be uniquely
determined by a linear combination of the valuation measures.

Inspired by the pricing scheme, we regard ρb(ST ) and −ρs(−ST ) as the valuations of the
ST (T ≤ T̄ ) under the valuation measures of the single period model, where T̄ is a time hori-
zon, ρb and ρs are valuation functionals, and S := {Sτ}t≤τ≤T̄ is a stock price process. Assume
there are two assets (one bond and one stock) and since there are two valuation measures, if the
conditions for CGM are satisfied, there exists a unique wT between 0 and 1 such that

Ct,St(T,K) = e−r(T−t)
{
wTρb

[
(ST −K)+

]
+ (1− wT )ρ̃s

[
(ST −K)+

]}
,

Pt,St(T,K) = e−r(T−t)
{
wT ρ̃b

[
(K − ST )

+
]
+ (1− wT )ρs

[
(K − ST )

+
]}

,

where Ct,St(T,K) and Pt,St(T,K) are European call and put prices calculated at time t, as-
suming that the present time is t and thus St is deterministic. In this assumption, we do not
need to introduce a conditional expectation in the formula. Here Pt,St(T,K) be found by a
put-call parity,1 and ρ̃b(X) = −ρb(−X), ρ̃s(X) = −ρs(−X), and ( ¦ )+ = max(¦, 0). Note
that the first formula holds for K = 0, i.e.,

Ct,St(T, 0) = St = e−r(T−t)
[
wTρb(ST ) + (1− wT )ρ̃s(ST )

]
,

which is a determining equation for wT . Suppose Sτ is geometric Brownian motion and
ρb(X) = ρs(X) = EQ(X), where Q is the martingale measure. Then this becomes the
Black-Scholes formula, and is, therefore, a generalization of Black-Scholes.

In general, a valuation functional can not be expressed as an expectation of probability mea-
sures. Therefore, our valuations are different from those of CGM, and we can not apply their
first and second fundamental theorems. However, those formulas still provide insights and
the prices given above satisfy the static no arbitrage conditions under some minor conditions.
Moreover, we can find adequate (ρb, ρs,S) triplets satisfying such conditions through this pro-
cedure.

As an application, we provide specific examples of (ρb, ρs,S) in Section 5. One gives a
5-parameter family of static no arbitrage pricing formulas having various types of smiles and
skews (see Figure 3 and Figure 4). By freezing all variables except one, we can produce a
huge class of a one parameter family of static no arbitrage pricing formulas with which we can
perform data analysis similar to that of Figlewski and HHK. We also provide a more simple
example. This emerges as a 3-parameter family of pricing formulas with relatively fewer types
of smiles. However, we are able to find a nearly optimal volatility curve which nicely fits the
synthetic data derived in HHK (see Figure 5) through a typical optimization algorithm with
three parameters.

We did not repeat the work of Figlewski and HHK by performing the similar data analysis.
Instead, we determined near optimal parameter values for the synthetic data HHK used. We
well document the significance of this fitting in Section 6 of HHK, and we conclude that our
model outperforms that of Black-Scholes in most instances.

1See the proof of Theorem 4.8 (iv).
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We organize this paper as follows. In Section 2, we introduce the static no arbitrage condi-
tions which Merton derived. In Section 3, we introduce Figlewski (IG in short) and modified
Figlewski (MIG in short) models. Section 4 is devoted to the construction of new static no arbi-
trage pricing formulas making use of distortions and coherent risk measures. We also provide
some comparison results. In Section 5, we provide two concrete examples of pricing formula
and discuss the shapes of smiles and skews.

2. STATIC NO ARBITRAGE CONDITIONS

Let C and P be the prices of European call and put options at time t, respectively, on the
stock price St (t: current time), with strike K, maturity T , and riskless rate r. We may think of
C = Ct,St(T,K) and P = Pt,St(T,K) as functions of maturity and strike. Merton indicated
the following conditions that any option price should satisfy to avoid static arbitrages [11]. (see
also HHK)

(i) Ct,St(T,K) is a decreasing, convex function of K.
(ii) Ct,St(T, 0) = lim

K↘0
Ct,St(T,K) = St.

(iii) For T1 ≥ T2 ≥ t, Ct,St(T1,Ker(T1−t)) ≥ Ct,St(T2,Ker(T2−t)).
(iv) Put-call parity: Ct,St(T,K)− Pt,St(T,K) = St −Ke−r(T−t).
(v) lim

K↗∞
Ct,St(T,K) = 0.

(vi) For T > 0, Ct,St(T, Ste
r(T−t)) > 0.

Now, let the call price is a function of St, i.e., Ct,St(T,K) = CT,K(t, St).
(vii) CT,K(t, 0) = lim

St↘0
CT,K(t, St) = 0.

(viii) lim
St↗∞

{
CT,K(t, St)− (St − e−r(T−t)K)

}
= 0.

Remark 2.1. The following condition is included in HHK.

* CT,K(t, St) is an increasing, convex function of asset price.

However, if St is discontinuous or non-Markovian, then * may not hold.(see Bergman et al.
[2].) Therefore, we omit this property for the static no arbitrage conditions, though , our
models in Section 5 satisfy the property.

3. FIGLEWSKI(IG) AND MODIFIED FIGLEWSKI(MIG) MODELS

In this section, we briefly introduce the Figlewski and modified Figlewski models introduced
by Figlewski and Henderson et al., respectively [8], [10]. Let C(T,K) = Ct,St(T,K) be the
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price function of a European call option with strike price K and maturity T . Then

IG : C(T,K) =

√
G+

(St −Ke−r(T−t))2

4
+

St −Ke−r(T−t)

2
, (3.1)

MIG : C(T,K) =

√
gSt +

(St −Ke−r(T−t) − g)2

4
+

St −Ke−r(T−t) − g

2
,

where G and g are non-negative parameters. Notice that each of the formulas gives a one
parameter family of price functions and MIG satisfies the static no arbitrage conditions, while
IG does not. HHK also introduce time dependant pricing formulas:

IGT : C(T,K) =

√
G(T − t) +

(St −Ke−r(T−t))2

4
+

St −Ke−r(T−t)

2
, (3.2)

MIGT : C(T,K) =

√
gSt(T − t) +

(St −Ke−r(T−t) − g(T − t))2

4

+
St −Ke−r(T−t) − g(T − t)

2
.
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FIGURE 1. The three lines correspond to three different values of the param-
eter G and g.

We omit the details of the analysis based on the real market data with reference to Figlewski
and HHK. Figure 1 indicates how the implied volatilities for IG and MIG change as the pa-
rameters vary. It exhibits only smile, which is a considerable drawback of the models. HHK
derived a quadratic regression of data and generated synthetic implied volatility data. One key
observation emanates from a comparison between the synthetic data, Black-Scholes, IG and
MIG (See Figure 2 ).2 In short, we may argue that the size of difference positively correlates

2In HHK, there is another model named Bachelier. We omit the model for simplicity.
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FIGURE 2. Synthetic implied volatility data, and the corresponding best fit
model implied volatilities (Black-Scholes, IG, and MIG)

with the error sizes. It indicates that IG and MIG outperform Black-Scholes for lower strike
prices, while they underperform for higher strike prices.

Note that picking the pricing formula is based on the tractability and shape of the function
rather than the theoretical background or economical meaning. We must note that if we are
more flexible in adapting tractability, that is, if we do not hold strictly to the form of the explicit
pricing function, we can produce a huge class of such a family of functions. Yet, we can deal
with those functions by numerical calculation. To clarify this, we introduce the procedure for
obtaining the IG and MIG pricing formulas. The appendix by HHK presents a detailed picture
of this.

Suppose C(T,K) satisfies (i), (ii), and (v) of static no arbitrage conditions. Let c =

C(T,K)/St and k = Ke−r(T−t)/St. Then c = h(k) should be a strictly positive convex
function with h(0) = 1 and h(∞) = 0. Since C(T,K) should be greater than or equal to
the intrinsic value of the option, we have h(k) ≥ 1 − k. From (i), h is decreasing and con-
vex, therefore there exists h−1(c) = k, which is decreasing and convex. As a result, we have
h−1(c) ≥ 1− c.

Let h̃(c) := h−1(c) − 1 + c. Then h̃ is a convex decreasing function with h̃(0) = ∞
and h̃(1) = 0. To find IG and MIG pricing formulas, we choose h̃(c) = F̃ /c and h̃(c) =

(1− c)M̃/c, respectively, where F̃ and M̃ are some positive parameters. But the former does
not satisfy the assumption: h̃(1) = 0, which is equivalent to h(0) = 1. Hence the IG model
has a static arbitrage.

To obtain the pricing formulas, we use the equation given by

k = h−1(c) = 1− c+ h̃(c). (3.3)
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Solving equation (3.3) by c and substituting F̃ = G/St and M̃ = g/St, we have the IG and
MIG pricing formulas (3.1), respectively. Note that the selection of such h̃ is for simplicity.

Varying from IG and MIG, if we do not stick to simplicity too much, we can choose different
functions, such as

h̃(c) =
(1− cα)G̃

cβ
, (3.4)

where α and β are positive integers, and G̃ is some positive parameter. As can be seen from
equation (3.3), we get

k = 1− c+
(1− cα)G̃

cβ
. (3.5)

Then c is defined implicitly in the equation. We can still locate its value by a numerical
scheme. However, selecting such functions in this way does not provide any intuition or eco-
nomical meaning. Amongst the huge number of pricing functions, how can we find the optimal
or nearly optimal one, with no insight? Consequently, it seems to be difficult to generalize the
IG and MIG models.

In the next section, we develop a new class of static no arbitrage pricing functions, making
use of distortions and coherent risk measures and the pricing theory in incomplete markets by
Carr et al. [4].

4. VALUATION FUNCTIONALS AND THE STATIC NO ARBITRAGE PRICING FORMULA

4.1. Construction. Let (Ω,F ,P) be a probability space where P represents the physical mea-
sure. For fixed T , let ST be the stock price realization at time T . Suppose there are two
Carr-Geman-Madan valuation measures ν1, ν2, which generate valuation of ST as Eν1(ST )
and Eν2(ST ), respectively [4]. Then the matrix of asset valuation test measure C is defined by

C =

(
e−r(T−t)Eν1(ST ) e−r(T−t)Eν2(ST )

e−r(T−t) e−r(T−t)

)
,

where r is the risk free interest rate. Note that, for any zero cost trading strategy α =
(α1, α2), α1St + α2e

−r(T−t) = 0 implies α2 = −α1Ste
r(T−t). Hence

αC = α1

(
e−r(T−t)Eν1(ST )− St, e

−r(T−t)Eν2(ST )− St

)
, (4.1)

Therefore, if
e−r(T−t)Eν1(ST ) > St, e

−r(T−t)Eν2(ST ) < St

or
e−r(T−t)Eν1(ST ) < St, e

−r(T−t)Eν2(ST ) > St

then there is no acceptable opportunity.
By the first and second fundamental theorems there is a unique wT such that

C(T,K) = e−r(T−t)
(
wTE

ν1
[
(ST −K)+

]
+ (1− wT )E

ν2
[
(ST −K)+

])
, (4.2)

where C(T,K) is the call option price with strike price K.
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We generalize this model using the following valuation functionals. Let M be the set of all
measurable functions defined on Ω.

Definition 4.1 (Valuation functional). A functional ρ : Mρ → R, is called a valuation func-
tional, where Mρ ⊂ M is the domain of ρ, if

(i) Mρ = {X ∈ M : ρ(X) < ∞ and ρ(−X) < ∞},
(ii) Separability: For any X ∈ Mρ, ρ(X) = ρ(X+) + ρ(−X−),

(iii) Translation invariance: ρ(X + α) = ρ(X) + α, for any α ∈ R.
(iv) Monotonicity: If X ≤ Y then ρ(X) ≤ ρ(Y ), for any X,Y ∈ Mρ.
(v) Relevance: For any X ≥ 0 ∈ Mρ, if X is not identically zero, then ρ(X) > 0.

(vi) Weak continuity: For any monotone sequence {Xn}n=1,2,3···, if Xn converge to X in
distribution and Xn, X ∈ Mρ, then ρ(Xn) → ρ(X).

The above conditions are relevant to prove that the resulting pricing formula satisfies the
static no arbitrage conditions. Consider two valuation functionals ρb and ρs, which we may in-
terpret as the buyer’s and seller’s valuational functional, respectively. Then the buyer’s price of
a random variable XT at time T should be ρb(XT ), and the seller’s price should be −ρs(−XT ).
Replacing Eν1(·) and Eν2(·) by ρb(·) and ρ̃s(·), where ρ̃(X) := −ρ(−X), the call option price
in (4.2) becomes

C(T,K) = e−r(T−t)
(
wTρb

[
(ST −K)+

]
+ (1− wT )ρ̃s

[
(ST −K)+

])
. (4.3)

The put option price can, then, be found by a put-call parity, which becomes

P (T,K) = e−r(T−t)
(
wT ρ̃b

[
(K − ST )

+
]
+ (1− wT )ρs

[
(K − ST )

+
])

. (4.4)

(i.e., if we set the put option price by (4.4), then it satisfies the put-call parity. See the proof of
Theorem 4.8 (iv). )

This single period model can be generalized to a continuous time model by considering the
fact that a stochastic process is just a one parameter family of random variables. Indeed, for
any valuation functional ρ, let

SPρ := {X := {Xτ}t≤τ≤T̄ : Xτ ∈ Mρ, for any τ ∈ (t, T̄ ]}.
Definition 4.2 (Continuous extension). Define

ϕ : (t, T̄ ]× SPρ −→ R
by ϕ(τ,X) = ρ(Xτ ).

Then ϕ(τ,X) represents the value of the process X at time τ ∈ (t, T̄ ].
Now, consider any stochastic process which represents the underlying asset price. The pro-

cess may not be Markovian. It needs to satisfy only three conditions.

Assumption 4.3 (Underlying asset price process ). We assume that any positive stock price
process S := {Sτ}t≤τ≤T̄ satisfies the following conditions for any τ ∈ (t, T̄ ]:

(i) Sτ has a continuous cdf,
(ii) (Sτ − Ste

r(τ−t))+ is not identically zero,
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(iii) (Regularity condition) Sτ is monotone increasing over St and for any K > 0, P
[
Sτ ≥

K
] → 1 as Sτ ↗ ∞.

Then we can generalize (4.3) and (4.4) by

C(τ,K) = e−r(τ−t)
(
wτ ϕb

(
τ, (S−K)+

)− (1− wτ )ϕs

(
τ,−(S−K)+

))
(4.5)

= e−r(τ−t)
(
wτρb

[
(Sτ −K)+

]
+ (1− wτ )ρ̃s

[
(Sτ −K)+

])
,

P (τ,K) = e−r(τ−t)
(
wτ ρ̃b

[
(K − Sτ )

+
]
+ (1− wτ )ρs

[
(K − Sτ )

+
])

,

for τ ∈ [t, T̄ ]. As we mentioned in section 1, we assume that the present time t and thus St is
deterministic.

Remark 4.4. If all valuation functionals are given by the expectations under the unique mar-
tingale measure Q and {Sτ}t≤τ≤T̄ is a geometric Brownian motion, then

Ct,St(τ,K) = e−r(τ−t)EQ
(
(Sτ −K)+

)
,

Pt,St(τ,K) = e−r(τ−t)EQ
(
(K − Sτ )

+
)
,

which recover Black-Scholes formulas.

Remark 4.5. In the above pricing scheme, all we need in relation to the stock price process
is the marginal density at each time τ . The path property of the process is not important. The
process may be even non-Markovian and the market model may be incomplete.

As we mentioned in Section 1, we will not discuss the validity of the first and second fun-
damental theorems in our case. Instead, we will concentrate on indicating that the formulas
satisfy the conditions for the static no arbitrage. To do this, we start to define some preliminary
concepts.

Definition 4.6. Let V be the class of all valuation functionals. For any positive stock price
process S := {Sτ}t≤τ≤T̄ ∈ SPρb ∩ SPρs , and ρb, ρs ∈ V , we say (ρb, ρs,S) is a consistent
triplet, if for any K ≥ 0 and for any t ≤ τ ≤ T̄ , ρb((Sτ −K)+) ≤ ρ̃s((Sτ −K)+) and there
exists a one parameter family of wτ (0 < wτ < 1) such that

St = e−r(τ−t)
(
wτ ρb(Sτ ) + (1− wτ ) ρ̃s(Sτ )

)
. (4.6)

Definition 4.7. Suppose a consistent triplet (ρb, ρs,S) satisfies the following conditions, then
we say the triplet is proper.

(a) For any t ≤ T ≤ T̄ , ρb
(
(ST − K)+

)
, ρ̃s

(
(ST − K)+

)
are decreasing convex

functions of K.
(b) For any K ≥ 0, C(T,Ker(T−t)) is an increasing function of T , where C(T,K) is
the associated pricing function in (4.5).
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Theorem 4.8. Let the consistent triplet (ρb, ρs,S) be proper. Then C(T,K) and P (T,K) in
(4.5) satisfy the static no arbitrage conditions.

Proof. The proof will be completed by checking the eight conditions in Section2.
(i) C(T,K) is decreasing and convex over K from (a).

(ii) Since (ST − 1/n)+ converges monotonously to ST as n → ∞, by (iv) and (vi) in
Definition 4.1, ρb(ST − K)+ → ρb(ST ) as K ↘ 0. Similarly, ρ̃s(ST − K)+ →
ρ̃s(ST ) as K ↘ 0. Hence, by (4.6),

lim
K↘0

C(T,K) = St.

(iii) By (b), C(T,Ker(T−t)) is increasing over T .
(iv) Put-call parity : Let w1 = wT , w2 = 1− wT . Since

ST −K = (ST −K)+ − (ST −K)−, (4.7)

C ( T,K)− P (T,K)

= e−r(T−t)
(
w1 ρb

[
(ST −K)+

]
+ w2 ρ̃s

[
(ST −K)+

])

−e−r(T−t)
(
w1 ρ̃b

[
(K − ST )

+
]
+ w2 ρs

[
(K − ST )

+
])

= e−r(T−t)w1

(
ρb
[
(ST −K)+

]− ρ̃b
[
(K − ST )

+
])

+e−r(T−t)w2

(
ρ̃s
[
(ST −K)+

]− ρs
[
(K − ST )

+
])

= e−r(T−t)w1

(
ρb
[
(ST −K)+

]
+ ρb

[−(K − ST )
+
])

+e−r(T−t)w2

(
ρ̃s
[
(ST −K)+

]
+ ρ̃s

[−(K − ST )
+
])

= e−r(T−t)w1

(
ρb
[
(ST −K)+

]
+ ρb

[−(ST −K)−
])

+e−r(T−t)w2

(
ρ̃s
[
(ST −K)+

]
+ ρ̃s

[−(ST −K)−
])

= e−r(T−t)
(
w1 ρb

[
ST −K

]
+ w2 ρ̃s

[
ST −K

]) (
by (ii) of Definition 4.1

)

= e−r(T−t)
(
w1 ρb(ST ) + w2 ρ̃s(ST )− (w1 + w2)K

) (
by (iii) of Definition 4.1

)

= St −Ke−r(T−t).

(v) Since (ST−n)+ converges monotonously to 0 as n → ∞, by (iv) and (vi) in Definition
4.1, ρb

(
(ST − K)+

) → ρb(0) = 0 as K ↗ ∞, where the equality can be obtained
from (ii) in Definition 4.1. Similarly ρ̃s

(
(ST −K)+

) → 0 as K ↗ ∞. Therefore

lim
K↗∞

C(T,K) = 0.
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(vi) Since (ST − Ste
r(T−t))+ is not identically zero, by the relevance condition,

C(T, Ste
r(T−t)) > 0.

(vii) For any T and any K > 0, let Ct,St(T,K) = CT,K(t, St). Since ρb(ST ) ≥ ρb
[
(ST −

K)+
]

and ρ̃s(ST ) ≥ ρ̃s
[
(ST −K)+

]
, by (4.5) and (4.6),

St ≥ CT,K(t, St) ≥ 0.

Therefore, CT,K(t, St) converges to 0 as St ↘ 0.
(viii) From put-call parity,

CT,K(t, St)− (St −Ke−r(T−t)) = PT,K(t, St),

where PT,K(t, St) = Pt,St(T,K) is given by (4.5). Using the regularity condition
in Assumption 4.3, for any x > 0, P

{
(K − ST )

+ ≥ x
} → 0 as St ↗ ∞. There-

fore, (K − ST )
+ goes to X ≡ 0 monotonously in distribution as St ↗ ∞. By

weak continuity in Definition 4.1, ρ̃b(Xn) → ρ̃b(0) = 0. Similarly, ρs(Xn) → 0.

Therefore, PT,K(t, St) converges to 0 as St ↗ ∞, i.e., lim
St↗∞

{
CT,K(t, St) − (St −

e−r(T−t)K)
}
= 0.

¤
4.2. Distortion type static no arbitrage pricing formula. In this section, we introduce a
class of valuation functionals defined by a function g, called distortion. For simplicity, as we
explain in the previous section, we will define only single period model. The continuous time
extension is similar to that in Definition 4.2.

The idea reverts back to Delbaen’s convex game and recent developments of insurance the-
ories (see [5], [6], [7], [13].) Later, we will choose specific g’s to construct a concrete family
of static no arbitrage pricing formulas.

Definition 4.9. Let (Ω,F ,P) be a probability space and g : [0, 1] → [0, 1] a continuous and
strictly increasing function with g(0) = 0 and g(1) = 1. Define a monotone set function
ν := g ◦ P. We call ν a distorted probability and g the corresponding distortion.

Remark 4.10. In general, g may not be continuous and may not be strictly increasing. For our
purpose, the above definition is enough.

Choquet defined a non-necessarily additive integration, which is called the Choquet integral
[5]. We call this a distortion type valuation functional with respect to the distorted probability
ν.

Definition 4.11 (Distortion type valuation functional). Let ν be a distorted probability. For
any non-atomic random variable X ∈ M, we define ρ(X) by

ρ(X) :=

∫ 0

−∞

(
ν(X ≥ x)− 1

)
dx+

∫ ∞

0
ν(X ≥ x)dx,

and let Mρ := {X : ρ(X) < ∞ and ρ(−X) < ∞, X is non-atomic}.
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A simple calculation shows

ρ(X) =

∫ ∞

0
ν(X ≥ x)dx+

∫ 0

−∞

(
ν(X ≥ x)− 1

)
dx

=

∫ ∞

0
ν(X ≥ x)dx−

∫ 0

∞

(
ν(−X ≤ y)− 1

)
dy

=

∫ ∞

0
g
[
P{X ≥ x}]dx−

∫ ∞

0

(
1− g

[
1− P{−X ≥ y}]

)
dy

=

∫ ∞

0
g
[
P{X ≥ x}]dx−

∫ ∞

0
g̃
[
P{−X ≥ y}]dy,

where g̃(u) := 1− g(1− u), for u ∈ [0, 1]. Note that g̃ is a distortion such that

(i) g̃(0) = 1− g(1) = 0 and g̃(1) = 1− g(0) = 1,
(ii) g̃ is an increasing function.

Therefore, we have

ρ(X) =

∫ ∞

0
g
[
P{X+ ≥ x}]dx−

∫ ∞

0
g̃
[
P{X− ≥ x}]dx (4.8)

=

∫ ∞

0
g
[
F̄X+(x)

]
dx−

∫ ∞

0
g̃
[
F̄X−(x)

]
dx,

where F̄X(x) := P{X ≥ x}.

Proposition 4.12. If ρ is a distortion type valuation functional, then it is a valuation functional.

Proof. (i) (Separability) For any Y ∈ Mρ, note that

ρ(Y ) =

∫ ∞

0
g
[
F̄Y +(x)

]
dx−

∫ ∞

0
g̃
[
F̄Y −(x)

]
dx.

Replacing Y by X+, we obtain ρ(X+) =
∫∞
0 g

[
F̄X+(x)

]
dx. Since ρ̃(Y ) = −ρ(−Y ),

ρ̃(Y ) = −
∫ ∞

0
g
[
F̄(−Y )+(x)

]
dx+

∫ ∞

0
g̃
[
F̄(−Y )−(x)

]
dx

= −
∫ ∞

0
g
[
F̄Y −(x)

]
dx+

∫ ∞

0
g̃
[
F̄Y +(x)

]
dx.

Replace Y by X−,

ρ̃(X−) =

∫ ∞

0
g̃
[
F̄X−(x)

]
dx.

Therefore, from (4.8)

ρ(X) = ρ(X+)− ρ̃(X−) = ρ(X+) + ρ(−X−).
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(ii) (Translation invariance) For any X ∈ Mρ and for any α ∈ R,

ρ(X + α) =

∫ ∞

0
g
[
P
{
(X + α)+ ≥ x

}]
dx

−
∫ ∞

0
g̃
[
P
{
(X + α)− ≥ x

}]
dx

=

∫ ∞

0
g
[
P
{
X ≥ x− α

}]
dx

−
∫ ∞

0
g̃
[
P
{−X ≥ x+ α

}]
dx

=

∫ ∞

0
g
[
P
{
X ≥ t

}]
dt+

∫ 0

−α
g
[
P
{
X ≥ t

}]
dt

−
∫ ∞

0
g̃
[
P
{−X ≥ t

}]
dt−

∫ 0

α
g̃
[
P
{−X ≥ t

}]
dt

= ρ(X) +

∫ 0

−α

{
g
[
P
{
X ≥ t

}]
+ g̃

[
P
{
X ≤ t

}]}
dt

= ρ(X) +

∫ 0

−α

{
g
[
P
{
X ≥ t

}]
+
(
1− g

[
P
{
X ≥ t

}])}
dt

= ρ(X) + α.

(iii) (Monotonicity) The proof of Monotonicity is trivial.
(iv) (Relevance) For X(≥ 0) ∈ Mρ, if X is not identically zero, then there is x > 0 such

that P{X ≥ x} > 0. Thus g
[
P{X ≥ x}] > 0. Since g and F̄X are continuous,

ρ(X) > 0.
(v) (Weak continuity) For any non-negative monotone sequence {Xn} ⊂ Mρ which con-

verges to X ∈ Mρ in distribution, we have P{Xn ≥ x} → P{X ≥ x} for all x that
are continuity points of F̄X , i.e., since discontinuity points are at most countably many,
P{Xn ≥ x} → P{X ≥ x} almost everywhere. Since g is continuous, g

[
P({Xn ≥

x}] → g
[
P{X ≥ x}] almost everywhere. First, we assume {Xn} is increasing.

Then, P{Xn ≥ x} ≤ P{X ≥ x}. Therefore, g
[
P{Xn ≥ x}] ≤ g

[
P{X ≥ x}],

since g is increasing. By Dominated convergence theorem, we get ρ(Xn) → ρ(X).
Decreasing case is similar, since Xn ≤ X1 and g

[
P{Xn ≥ x}] → g

[
P({X ≥ x}].

Finally, this result can be extended easily to any monotone sequence in Mρ.
¤

Theorem 4.13. Let ρb, ρs be distortion type valuation functionals with corresponding distor-
tions gb and gs, respectively. Suppose (ρb, ρs,S) is a consistent triplet, gb, gs are differentiable,

and
∂

∂T
C(T,Ker(T−t)) ≥ 0. Then C(T,K) and P (T,K) in (4.5) satisfy the static no arbi-

trage conditions. In this case, we call the equations distortion type pricing formulas.

Proof. By Theorem 4.8, it suffices to show that our consistent triplet (ρb, ρs,S) is proper.
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(a) For 0 ≤ T ≤ T̄ ,

ρb
(
(ST −K)+

)
=

∫ ∞

0
gb
[
F̄(ST−K)+(x)

]
dx

=

∫ ∞

K
gb
[
F̄ST

(x)
]
dx

= −
∫ K

∞
gb
[
F̄ST

(x)
]
dx,

and

ρ̄s
(
(ST −K)+

)
= −

∫ K

∞
g̃s
[
F̄ST

(x)
]
dx.

Therefore,
∂

∂K
ρb
(
(ST −K)+

)
= −gb

[
F̄ST

(K)
]
< 0,

∂

∂K
ρ̃s
(
(ST −K)+

)
= −g̃b

[
F̄ST

(K)
]
< 0.

Moreover, since gb, g̃s are increasing,

∂2

∂K2
ρb
(
(ST −K)+

)
= − ∂

∂K

(
gb
[
F̄ST

(K)
])

= −g′b
[
F̄ST

(K)
] · (− fST

(K)
)
> 0,

and
∂2

∂K2
ρ̃s
(
(ST −K)+

)
= −g̃′b

[
F̄ST

(K)
] · (− fST

(K)
)
> 0,

where fST
is the pdf of ST .

(b) Since
∂

∂T
C(T,Ker(T−t)) ≥ 0, C(T,Ker(T−t)) is an increasing function of T.

¤
4.3. Coherent type static no arbitrage pricing formula. Another class of examples of the
valuation functionals can be obtained from the coherent risk measure. Let (Ω,F ,P) be a
probability space. Let L∞ be the set of all bounded random variables defined on Ω. Artzner et
al. introduced a risk measure which they called a coherent risk measure [1].

Definition 4.14 (Coherent risk measure). A functional φ : L∞ → R, is called a coherent risk
measure if it satisfies

(i) Translation invariance : φ(X + α) = φ(X)− α
(ii) Sub-additivity: φ(X1 +X2) ≤ φ(X1) + ρ(X2)

(iii) Positive homogeneity: φ(λX) = λφ(X) for all λ ≥ 0
(iv) Monotonicity: X ≤ Y implies φ(X) ≥ φ(Y ).

Instead of the above definition, we sometimes use the supermodular functional introduced
by Delbaen [6]. This satisfies super additivity.
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Definition 4.15 (Supermodular functional). A functional ρ : Mρ = L∞ → R, is called a
supermodular functional if ρ(X) = −φ(X) for some coherent risk measure φ. That is, it
satisfies

(i) Translation invariance : ρ(X + α) = ρ(X) + α
(ii) Super-additivity: ρ(X1 +X2) ≥ ρ(X1) + ρ(X2)

(iii) Positive homogeneity: ρ(λX) = λρ(X) for all λ ≥ 0
(iv) Monotonicity: X ≤ Y implies ρ(X) ≤ ρ(Y ).

Definition 4.16 (Coherent type valuation functional). If a supermodular functional satisfies
conditions (ii),(v) and (vi) in Definition 4.1, then we call it a coherent type valuation functional.

Remark 4.17. Coherent type valuation functional is a valuation functional.

Proposition 4.18. Let ρ be a distortion type valuation functional with a differentiable distortion
g. If g is a convex distortion, then ρ is a coherent type valuation functional.

Proof. The proof is in Chapters 5 and 6 of [7] and [12] with different notations. ¤

4.4. Comparisons between the IG, MIG and Distortion type static no arbitrage model.
In this section we examine whether the MIG model can be expressed as distortion type pricing
formulas. It turns out that IG, MIG formulas are not distortion type. Moreover, they are not of
the moderate type, which is defined as follows.

Definition 4.19. If a valuation functional ρ satisfies the additional condition (vii) to Definition
4.1, then we call ρ a moderate valuation functional, where

(vii) Pseudo translation invariance: for any random variable X ≥ 0 with continuous
cdf at 0,

ρ(X · 1{X≥h} − h · 1{X≥h}) = ρ(X)− h+ o(h).

Theorem 4.20. Suppose (ρb, ρs,S) is a consistent triplet, and ρb, ρ̃s are moderate valuation
functional. Let C(K) = Ct,St(K,T ) be the associated call option price with maturity T . Then

dC

dK

∣∣∣
K=0

= −e−r(T−t)
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Proof.

C(h)− C(0)

h
=

1

h
e−r(T−t)

(
wT ρb

[
(ST − h)+

]

+ (1− wT ) ρ̃s
[
(ST − h)+

]− Ste
r(T−t)

)

=
1

h
e−r(T−t)

(
wT ρb

[
(ST − h) · 1{ST≥h}

]

+ (1− wT ) ρ̃s
[
(ST − h) · 1{ST≥h}

]− Ste
r(T−t)

)

=
1

h
e−r(T−t)

(
wT

{
ρb(ST )− h+ o(h)

}

+ (1− wT )
{
ρ̃s(ST )− h+ o(h)

}− Ste
r(T−t)

)

(by (vii) of Definition 4.19)

=
1

h
e−r(T−t)

(
wT ρb(ST ) + (1− wT ) ρ̃s(ST )− h+ o(h)− Ste

r(T−t)
)

Letting h → 0,
C(h)− C(0)

h
converges to −e−r(T−t). ¤

Corollary 4.1. MIG pricing function can not be derived from a moderate valuation functional.

Proof. Since C =

√
gS0 +

(S0 −Ke−r(T−t) − g)2

4
+
S0 −Ke−r(T−t) − g

2
and g is positive,

dC

dK

∣∣∣
K=0

=
(
− (S0 −Ke−r(T−t) − g)/2

2
√

gS0 + (S0 −Ke−r(T−t) − g)2/4
− 1

2

)
e−r(T−t)

∣∣∣
K=0

=
(
− (S0 − g)/2

2
√

gS0 + (S0 − g)2/4
− 1

2

)
e−r(T−t)

> −e−r(T−t).

This completes the proof. ¤

Corollary 4.2. MIG pricing function is not a distortion type formula.

Proof. It is not difficult to show that the distortion type is moderate. ¤

The remaining of this section is devoted to explain a distortion type pricing model in the
view point of the construction of IG and MIG in Section 3. Consider a distortion type call
option price function as follows.

Ct,St(T,K) = e−r(T−t)
(
wTρb

[
(ST −K)+

]
+ (1− wT )ρ̃s

[
(ST −K)+

])
, (4.9)
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where wT ∈ (0, 1). Then equation (4.9) becomes

C(T,K) = e−r(T−t)

∫ ∞

0

(Gw ◦ F̄(ST−K)+
)
(x)dx (4.10)

= e−r(T−t)

∫ ∞

K

(Gw ◦ F̄ST

)
(x)dx

= St − e−r(T−t)

∫ K

0

(Gw ◦ F̄ST

)
(x)dx,

where Gw := wT gb + (1 − wT )g̃s and gb, g̃s are corresponding distortions. The last equality
holds because limK↘0C(T,K) = St.

Now we set c = C(T,K)/St, k = Ke−r(T−t)/St, and sT = ST e
−r(T−t)/St. Then

equation (4.10) becomes

c = ϕ(k) = 1−
∫ k

0

(Gw ◦ F̄sT

)
(x)dx ≥ 1− k. (4.11)

It is easy to see that ϕ(0) = 1 and ϕ(∞) = 0. Suppose gb and g̃s are differentiable. Differen-
tiate both sides of (4.11) with k and differentiate twice with k, then we obtain

dc/dk = −(Gw ◦ F̄sT

)
(k) < 0 and d2c/dk2 = −G′

w(F̄sT (k))(−fsT (k)) > 0,

where fsT is the pdf of sT . Therefore c = ϕ(k) is decreasing and convex.
In the next section, we provide methods of how to construct concrete and tractable static no

arbitrage pricing formulas. Using the methods, we can obtain huge classes of static no arbitrage
pricing formulas. Though it may be difficult to deal with them analytically, numerical analysis
is not difficult.

5. APPLICATION

5.1. An example which exibits various shapes of smiles and skews. Consider the cdf Ψ(x)
of Student’s t, which is defined by

Ψ(x) :=
B ν

ν2+x2
(ν2 ,

1
2)

2B(ν2 , 12)
, for x ≤ 0,

and

Ψ(x) := 1−Ψ(−x), for x > 0,

where ν > 2, B(x, y) is a beta function and Bu(x, y) is an incomplete beta function defined by

Bu(x, y) =
1

B(x, y)
∫ u

0
tx−1(1− t)y−1dt. For λ > 0, we choose a distortion g such that

g(u) := Ψ(Ψ−1(u)− λ) 1, u ∈ [0, 1].

1This type of distortion with normal cdf is given by Wang for different purposes [13].
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Note that g(0) = 0, g(1) = 1 and g is increasing.2 Since Ψ(−x) = 1−Ψ(x) and Ψ−1(1−t) =
−Ψ−1(t), we have

g̃(u) := 1− g(1− u) = Ψ(Ψ−1(u) + λ), u ∈ [0, 1].

Consider the triplet (ρgb , ρgs ,S) with corresponding distortions gb(u) = Ψ(Ψ−1(u) − λB)
and gs(u) = Ψ(Ψ−1(u) − λS). Let ρgb = ρb and ρgs = ρs. Note that gb(u) = Ψ(Ψ−1(u) −
λB) ≤ Ψ(Ψ−1(u) + λS) = g̃s(u). Hence, for any K ≥ 0 and any T ∈ [t, T̄ ],

ρb
[
(ST −K)+

]
=

∫ ∞

0
gb
[
F̄(ST−K)+(x)

]
dx

≤
∫ ∞

0
g̃s
[
F̄(ST−K)+(x)

]
dx

= ρ̃s
[
(ST −K)+

]
.

Let S := {Sτ}t≤τ≤T̄ be a stock price process given by

Sτ = hτ (ξ), (5.1)

where ξ is a Student’s t with pdf ψ(x) =
(1 + x2/ν)−

ν+1
2√

νB(ν2 , 12)
, ν > 2, and

hT (ξ) =

{
St e

aξ+r(T−t) : ξ ≤ 0,

St (b ξ + 1) er(T−t) : ξ > 0,
(5.2)

where a, b are positive constants. The reason we pick hT (ξ) with this shape is for simplicity
and we can easily show that for any T ∈ (t, T̄ ], ST ∈ Mρb ∩Mρs , ST has a continuous cdf,
and (ST − Ste

r(T−t))+ is not identically zero. It also satisfies the regularity condition. With
suitable constraints on λB, λS , which we will discuss later, the associated European call price
function C(T,K) is given by

C(T,K) = e−r(T−t)
(
wTρb

[
(ST −K)+

]
+ (1− wT )ρ̃s

[
(ST −K)+

])
,

= e−r(T−t)
(
wT

∫ ∞

K
gb
[
F̄ST

(x)
]
dx+ (1− wT )

∫ ∞

K
g̃s
[
F̄ST

(x)
]
dx

)
,

which becomes

e−r(T−t)

∫ ∞

K

{
wT Ψ

(
Ψ−1[F̄ST

(x)]− λB

)
+ (1− wT )Ψ

(
Ψ−1[F̄ST

(x)] + λS

)}
dx, (5.3)

where wT =
(
ρ̃s(ST )− Ste

r(T−t)
)
/
(
ρ̃s(ST )− ρb(ST )

)
.

2Since g is not convex, it may not be a coherent type valuation functional.
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Since hT : R→ R+ is a continuous positive increasing function, there exist h−1
T : R+ → R

such that

h−1
T (x) =





1

a

(
log(x/St)− r(T − t)

)
: 0 < x ≤ Ste

r(T−t),

1

bSt

(
xe−r(T−t) − St

)
: x > Ste

r(T−t),
(5.4)

and

F̄ST
(x) = P{ST ≥ x} (5.5)

= P{hT (ξ) ≥ x}
= P{ξ ≥ h−1

T (x)}
= Ψ(−h−1

T (x)).

Using (5.4) and (5.5), the associated European call price function (5.3) becomes

(i) 0 ≤ K ≤ Ste
r(T−t):

C(T,K) = e−r(T−t)
[
wT

∫ Ster(T−t)

K
Ψ(α)dx+ wT

∫ ∞

Ster(T−t)

Ψ(β)dx (5.6)

+ (1− wT )

∫ Ster(T−t)

K
Ψ(α̃)dx+ (1− wT )

∫ ∞

Ster(T−t)

Ψ(β̃)dx
]
,

(ii) K > Ste
r(T−t):

C(T,K) = e−r(T−t)
[
wT

∫ ∞

K
Ψ(β)dx+ (1− wT )

∫ ∞

K
Ψ(β̃)dx

]
, (5.7)

where

α = −1

a

(
log(x/St)− r(T − t)

)− λB

α̃ = −1

a

(
log(x/St)− r(T − t)

)
+ λS

β = − 1

bSt

(
xe−r(T−t) − St

)− λB

β̃ = − 1

bSt

(
xe−r(T−t) − St

)
+ λS .

Simple substitution yields,
(i) 0 ≤ K ≤ St:

C(T,Ker(T−t)) = wT

∫ St

K
Ψ(γ)dx+ wT

∫ ∞

St

Ψ(δ)dx (5.8)

+ (1− wT )

∫ St

K
Ψ(γ̃)dx+ (1− wT )

∫ ∞

St

Ψ(δ̃
)
dx,
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(ii) K > St:

C(T,Ker(T−t)) = wT

∫ ∞

K
Ψ(δ)dx+ (1− wT )

∫ ∞

K
Ψ(δ̃)dx, (5.9)

where

γ = −1

a
log(x/St)− λB

γ̃ = −1

a
log(x/St) + λS

δ = − 1

bSt

(
x− St

)− λB

δ̃ = − 1

bSt

(
x− St

)
+ λS .

By Theorem 4.13, we should check ∂
∂T C(T,Ker(T−t)) ≥ 0 to indicate that the associated

pricing function satisfies the static no arbitrage conditions.
Letting K ↘ 0 in (5.8), we have a condition

St =
[
wT

∫ St

0
Ψ(γ)dx+ wT

∫ ∞

St

Ψ(δ)dx (5.10)

+ (1− wT )

∫ St

0
Ψ(γ̃)dx+ (1− wT )

∫ ∞

St

Ψ(δ̃)dx
]
.

Note that wT can be determined by (5.10), i.e.,

wT =

[ ∫ St

0 Ψ(γ̃)dx+
∫∞
St

Ψ(δ̃)dx
]− St[ ∫ St

0 Ψ(γ̃)dx+
∫∞
St

Ψ(δ̃)dx
]− [ ∫ St

0 Ψ(γ)dx+
∫∞
St

Ψ(δ)dx
] . (5.11)

Therefore, wT is constant for T . Hence C(T,Ker(T−t)) is not T dependent. Taken together,
C(T,K) satisfies the static no arbitrage conditions.

Using simple substitution of variables, the condition (5.10) can be expressed by

1 = wT

[
ae−aλB

∫ ∞

−λB

e−auΨ(u)du+ b

∫ −λB

−∞
Ψ(u)du

]
(5.12)

+ (1− wT )
[
aeaλS

∫ ∞

λS

e−auΨ(u)du+ b

∫ λS

−∞
Ψ(u)du

]
.

Let D = {λB, λS , a, b, ν, wT } be the set of parameters. By (5.12), one element of D is
determined by the others. Now we provide various shapes of smile and skew by selecting
specific parameters. See Figure 3 and Figure 4.

Though this example provides a rich class of volatility shapes, due to the complexity, it is
difficult to determine parameters. The next example provides a relative ease in determining
parameters, though it does not have ample volatility smile structure.
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FIGURE 3. Various Smile curves: St = 381.7, r = 0.0629, T − t =
0.5, ν = 3, λS = 1, wT = 0.8, (a) Left figure(⇓):(1)λB = 0.11, (2)λB =
0.1986, (3)λB = 0.3044, (b) Right figure(⇓):(1)λB = 0.2575, (2) λB =
0.1986, (3)λB = 0.1355
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FIGURE 4. Various Skew curves: St = 381.7, r = 0.0629, T − t = 0.5, ν =
30, λS = 2, wT = 0.6687, (a) Left figure(⇓):(1)λB = 0.0552, (2)λB =
0.1966, (3)λB = 0.3393 (b) Right figure(⇓):(1)λB = 0.2679, (2) λB =
0.1966, (3)λB = 0.1205
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5.2. An example of near optimal fitting for the synthetic data used in Henderson et al.
Consider the cdf Φ(x) of standard normal, defined by

Φ(x) :=

∫ x

−∞

1√
2π

e−t2/2dt . (5.13)

For λ > 0, we choose a distortion g such that

g(u) := Φ(Φ−1(u)− λ), u ∈ [0, 1].

Note that g(0) = 0, g(1) = 1 and g is increasing convex. Since Φ(−x) = 1 − Φ(x) and
Φ−1(1− t) = −Φ−1(t), we have

g̃(u) = Φ(Φ−1(u) + λ), u ∈ [0, 1].

Consider the triplet (ρgb , ρgs ,S) with corresponding distortions gb(u) = Φ(Φ−1(u) − λB)
and gs(u) = Φ(Φ−1(u) − λS). Since gb, gs are convex, by Proposition 4.18, ρgb and ρgs
are coherent type valuation functionals. Let ρgb = ρb and ρgs = ρs. Note that gb(u) =
Φ(Φ−1(u)− λB) ≤ Φ(Φ−1(u) + λS) = g̃s(u). Hence, for any K ≥ 0 and any T ∈ (t, T̄ ],

ρb
[
(ST −K)+

] ≤ ρ̃s
[
(ST −K)+

]
.

Let S := {Sτ}t≤τ≤T̄ be a stock price process given by

Sτ = St e
εa+r(τ−t), (5.14)

where ε is a standard normal random variable and a is some positive parameter. Then we can
easily show that ST ∈ Mρb ∩ Mρs , ST has a continuous cdf, and (ST − Ste

r(T−t))+ is not
identically zero. It also satisfies the regularity condition. With suitable constraints on λB, λS ,
which we will discuss later, the associated European call price function C(T,K) is given by

C(T,K) = e−r(T−t)
(
wTρb

[
(ST −K)+

]
+ (1− wT )ρ̃s

[
(ST −K)+

])
,

= e−r(T−t)
(
wT

∫ ∞

K
gb
[
F̄ST

(x)
]
dx+ (1− wT )

∫ ∞

K
g̃s
[
F̄ST

(x)
]
dx

)
,

which becomes

e−r(T−t)

∫ ∞

K

{
wT Φ

(
Φ−1[F̄ST

(x)]− λB

)
+ (1− wT )Φ

(
Φ−1[F̄ST

(x)] + λS

)}
dx, (5.15)

where wT =
(
ρ̃s(ST )− Ste

r(T−t)
)
/
(
ρ̃s(ST )− ρb(ST )

)
.

Note that

F̄ST
(x) = P{ST ≥ x} (5.16)

= P{Ste
aε+r(T−t) ≥ x}

= P
{
ε ≥ log(x/St)− r(T − t)

a

}

= Φ
(− log(x/St) + r(T − t)

a

)
.
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Using (5.16), the associated pricing function (5.15) becomes

C(T,K) = e−r(T−t)
[
wT

∫ ∞

K
Φ
(− log(x/St) + r(T − t)

a
− λB

)
dx (5.17)

+(1− wT )

∫ ∞

K
Φ
(− log(x/St) + r(T − t)

a
+ λS

)
dx

]
.

Simple substitution yields,

C(T,Ker(T−t)) =
[
wT

∫ ∞

K
Φ
(− log(x/St)

a
− λB

)
dx (5.18)

+(1− wT )

∫ ∞

K
Φ
(− log(x/St)

a
+ λS

)
dx

]
.

Therefore,

St = C(T, 0) =
[
wT

∫ ∞

0
Φ
(− log(x/St)

a
− λB

)
dx (5.19)

+(1− wT )

∫ ∞

0
Φ
(− log(x/St)

a
+ λS

)
dx

]
.

By Theorem 4.13, we should check ∂
∂T C(T,Ker(T−t)) ≥ 0 to show the associated pricing

function satisfies the static no arbitrage conditions.
Note that wT can be determined by (5.19), i.e.,

wT =

∫∞
0 Φ

(− log(x/St)/a+ λS

)
dx− St∫∞

0 Φ
(− log(x/St)/a+ λS

)
dx− ∫∞

0 Φ
(− log(x/St)/a− λB

)
dx

. (5.20)

Therefore, wT is constant for T . Hence C(T,Ker(T−t)) is not T dependent. In total,
C(T,K) satisfies static no arbitrage conditions.

Using simple substitution of variables, (5.19) becomes

a
(
wT e

−aλB + (1− wT )e
aλS

) ∫ ∞

−∞
e−auΦ(u)du− 1 = 0. (5.21)

There are four parameters, λB, λS , wT , and a, one of which is determined by the others
through (5.21). Let x = (λB, λS , wT , a). Define f(x) by

f(x) :=
∑

i

{
CMarket(T,Ki)− C(T,Ki;x)

}2
, (5.22)

where CMarket(T,Ki) and C(T,Ki;x) are the observed market price and the predicted model
price, respectively, of the option with strike price Ki. Let

h(x) = a
(
wT e

−aλB + (1− wT )e
aλS

) ∫ ∞

−∞
e−auΦ(u)du− 1,

and
g(x) = (−λB,−λS , wT − 1,−a).
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Then the determining of parameters becomes the optimization problem given by

minimize f(x)

subject to h(x) = 0, g(x) ≤ 0,

where 0 = (0, 0, 0, 0).1
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FIGURE 5. Comparison of implied volatilities (Synthetic data, Our model,
Black-Scholes, IG, and MIG). Parameters for our model: λB = 2.9999476,
λS = 0.419358, a = 0.065, wT = 0.143432, St = 381.7, r = 0.0629,
T − t = 0.5.

Figure 5 indicates our near optimal fitting result for the synthetic data used in HHK. To
obtain this result, we use the steepest descent method and numerical integration. Section 6 of
HHK well documents the significance of this fitting.

1In Definition 4.6, wt should satisfy 0 < wt < 1. However, the condition wt < 1 is enough to have static no
arbitrage price.
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For example, IG and MIG more appropriately fit for lower strike prices. Our model almost
perfectly matches the synthetic data.

The analysis with real market data and the hedging issues will be a subsequent study.
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