• 제목/요약/키워드: Implicit mode function

검색결과 6건 처리시간 0.019초

Direct and Indirect Robust Adaptive Fuzzy Controllers for a Class of Nonlinear Systems

  • Essounbouli Najib;Hamzaoui Abdelaziz
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.146-154
    • /
    • 2006
  • In this paper, we propose direct and indirect adaptive fuzzy sliding mode control approaches for a class of nonaffine nonlinear systems. In the direct case, we use the implicit function theory to prove the existence of an ideal implicit feedback linearization controller, and hence approximate it to attain the desired performances. In the indirect case, we exploit the linear structure of a Takagi-Sugeno fuzzy system with constant conclusion to establish an affine-in-control model, and therefore design an indirect adaptive fuzzy controller. In both cases, the adaptation laws of the adjustable parameters are deduced from the stability analysis, in the sense of Lyapunov, to get a more accurate approximation level. In addition to their robustness, the design of the proposed approaches does not require the upper bounds of both external disturbances and approximation errors. To show the efficiency of the proposed controllers, a simulation example is presented.

Determination of cable force based on the corrected numerical solution of cable vibration frequency equations

  • Dan, Danhui;Chen, Yanyang;Yan, Xingfei
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.37-52
    • /
    • 2014
  • The accurate determination of cable tension is important to the monitoring of the condition of a cable-stayed bridge. When applying a vibration-based formula to identify the tension of a real cable under sag, stiffness and boundary conditions, the resulting error must not be overlooked. In this work, by resolving the implicit frequency function of a real cable under the above conditions numerically, indirect methods of determining the cable force and a method to calculate the corresponding cable mode frequency are investigated. The error in the tension is studied by numerical simulation, and an empirical error correction formula is presented by fitting the relationship between the cable force error and cable parameters ${\lambda}^2$ and ${\xi}$. A case study on two real cables of the Shanghai Changjiang Bridge shows that employing the method proposed in this paper can increase the accuracy of the determined cable force and reduce the computing time relative to the time required for the finite element model.

Reliability analysis by numerical quadrature and maximum entropy method

  • Zhu, Tulong
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.135-144
    • /
    • 1995
  • Since structural systems may fail in any one of several failure modes, computation of system reliability is always difficult. A method using numerical quadrature for computing structural system reliability with either one or more than one failure mode is presented in this paper. Statistically correlated safety margin equations are transformed into a group of uncorrelated variables and the joint density function of these uncorrelated variables can be generated by using the Maximum Entropy Method. Structural system reliability is then obtained by integrating the joint density function with the transformed safety domain enclosed within a set of linear equations. The Gaussian numerical integration method is introduced in order to improve computational accuracy. This method can be used to evaluate structural system reliability for Gaussian or non-Gaussian variables with either linear or nonlinear safety boundaries. It is also valid for implicit safety margins such as computer programs. Both the theory and the examples show that this method is simple in concept and easy to implement.

경험적 모드분해법에 기초한 계층적 평활방법 (Hierarchical Smoothing Technique by Empirical Mode Decomposition)

  • 김동호;오희석
    • 응용통계연구
    • /
    • 제19권2호
    • /
    • pp.319-330
    • /
    • 2006
  • 현실세계에서 관찰되는 시그널(signal)은 다양한 주파수(frequency)들의 시그널로 혼합되어 있는 경우가 많다. 예를 들어 태양 흑점 자료의 경우 약 11년 주기와 85년 주기로 변동한다는 사실은 널리 알려져 있다. 또한 경제 시계열 자료의 경우는 통상적으로 계절요인(seasonal component), 순환요인(cyclic component) 그리고 장기적인 추세요인(long-term trend)으로 분해하여 분석한다. 이러한 시계열 자료를 구성요소별로 분해하는 것은 오래된 주제중 하나이다. 전통적인 시계열자료 분석기법으로 스펙트럴 분석기법 등이 널리 사용되고 있으나 시계열 자료들이 비정상(nonstationary)일 경우에는 적용하기 어렵다. Huang et. al(1998)은 경험적 모드분해법(empirical mode decomposition)이라고 하는 자료적응적인(data-adaptive) 방법을 제안하였는데, 비정상성(nonstationarity)에 대한 강건성(robustness)으로 여러 분야에 널리 응용되고 있다. 그러나 Huang et. at(1998)은 잡음(error)에 의해 오염된 자료에 대한 구체적인 처리방법은 제시하지 못하고 있다. 본 논문을 통하여 효율적인 잡음제거 방법을 제안하고자 한다.

The hybrid uncertain neural network method for mechanical reliability analysis

  • Peng, Wensheng;Zhang, Jianguo;You, Lingfei
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.510-519
    • /
    • 2015
  • Concerning the issue of high-dimensions, hybrid uncertainties of randomness and intervals including implicit and highly nonlinear limit state function, reliability analysis based on the hybrid uncertainty reliability mode combining with back propagation neural network (HU-BP neural network) is proposed in this paper. Random variables and interval variables are as input layer of the neural network, after the training and approximation of the neural network, the response variables are obtained through the output layer. Reliability index is calculated by solving the optimization model of the most probable point (MPP) searching in the limit state band. Two numerical cases are used to demonstrate the method proposed in this paper, and finally the method is employed to solving an engineering problem of the aerospace friction plate. For this high nonlinear, small failure probability problem with interval variables, this method could achieve a good analysis result.

Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory

  • Keshtegar, Behrooz;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • 제28권2호
    • /
    • pp.195-207
    • /
    • 2018
  • First-order reliability method (FORM) is enhanced based on the search direction using relaxed conjugate reliability (RCR) approach for the embedded nanocomposite beam under buckling failure mode. The RCR method is formulated using discrete conjugate map with a limited scalar factor. A dynamical relaxed factor is proposed to control instability of proposed RCR, which is adjusted using sufficient descent condition. The characteristic of equivalent materials for nanocomposite beam are obtained by micro-electro-mechanical model. The probabilistic model of nanocomposite beam is simulated using the sinusoidal shear deformation theory (SSDT). The beam is subjected to external applied voltage in thickness direction and the surrounding elastic medium is modeled by Pasternak foundation. The governing equations are derived in terms of energy method and Hamilton's principal. Using exact solution, the implicit buckling limit state function of nanocomposite beam is proposed, which is involved various random variables including thickness of beam, length of beam, spring constant of foundation, shear constant of foundation, applied voltage, and volume fraction of ZnO nanoparticles in polymer. The robustness, accuracy and efficiency of proposed RCR method are evaluated for this engineering structural reliability problem. The results demonstrate that proposed RCR method is more accurate and robust than the excising reliability methods-based FORM. The volume fraction of ZnO nanoparticles and the applied voltage are the sensitive variables on the reliable levels of the nanocomposite beams.