• Title/Summary/Keyword: Implicit integration

Search Result 211, Processing Time 0.021 seconds

Reactor core analysis through the SP3-ACMFD approach Part II: Transient solution

  • Mirzaee, Morteza Khosravi;Zolfaghari, A.;Minuchehr, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.230-237
    • /
    • 2020
  • In this part, an implicit time dependent solution is presented for the Boltzmann transport equation discretized by the analytic coarse mesh finite difference method (ACMFD) over the spatial domain as well as the simplified P3 (SP3) for the angular variable. In the first part of this work we proposed a SP3-ACMFD approach to solve the static eigenvalue equations which provide the initial conditions for temp dependent equations. Having solved the 3D multi-group SP3-ACMFD static equations, an implicit approach is resorted to ensure stability of time steps. An exponential behavior is assumed in transverse integrated equations to establish a relationship between flux moments and currents. Also, analytic integration is benefited for the time-dependent solution of precursor concentration equations. Finally, a multi-channel one-phase thermal hydraulic model is coupled to the proposed methodology. Transient equations are then solved at each step using the GMRES technique. To show the sufficiency of proposed transient SP3-ACMFD approximation for a full core analysis, a comparison is made using transport peers as the reference. To further demonstrate superiority, results are compared with a 3D multi-group transient diffusion solver developed as a byproduct of this work. Outcomes confirm that the idea can be considered as an economic interim approach which is superior to the diffusion approximation, and comparable with transport in results.

Co-simulation of MultiBody Dynamics and Plenteous Sphere of Contacted Particles Using NVIDIA GPGPU (NVIDIA 의 GPGPU 를 이용한 수 많은 구형 접촉 입자가 포함된 다물체 동역학 해석)

  • Park, Ji-Soo;Yoon, Joon-Shik;Choi, Jin-Hwan;Rhim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.465-474
    • /
    • 2012
  • In this study, a dynamic simulation model that considers many spherical particles and multibody dynamics (MBD) entities is developed. Plenteous spherical particles are solved using the Discrete Element Method (DEM) technique and simulated on a GPU board in a PC. A fast algorithm is used to calculate the Hertzian contact forces between many spherical particles, and NVIDIA CUDA is used to increase the calculation speed. The explicit integration method is applied to solve the many spheres. MBD entities are simulated by recursive formulation. Constraints are reduced by recursive formulation, and the implicit generalized alpha method is applied to solve the dynamic model. A new algorithm is developed to simulate the DEM and MBD models simultaneously. As a numerical example, a truck car model and gear model are developed. The results show that the proposed algorithm using a general-purpose GPU in a PC has many advantages.

Hierarchical Simulation for Real-time Cloth Animation and LOD control (실시간 옷감 애니메이션과 LOD 제어를 위한 계층적 시뮬레이션)

  • Kang, Young-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.479-485
    • /
    • 2007
  • In this paper, a hierarchical simulation with an approximate implicit method is proposed in order to efficiently and plausibly animate mass-spring based cloth models. The proposed hierarchical simulation method can generate realistic motion of extremely fine mesh in interactive rate. The proposed technique employs a fast and stable simulation method which approximates the implicit integration. Although the approximate method is efficient, it is extremely inaccurate and shows excessively damped behavior. The hierarchical simulation technique proposed in this paper constructs multi-level mesh structure in order to represent the realistic appearance of cloth model and performs simulation on each level of the mesh with constraints that enforce some of the mass-points of current level to follow the movement of the previous level. This hierarchical method efficiently generates a plausible movement of a cloth model composed of large number of mass points. Moreover, this hierarchical method enables us to generate realistic wrinkles on the cloth, and the wrinkle pattern on the cloth model can be easily controlled because we can specify different contraction resistance force of springs according to their hierarchical level.

HUGE DIRECT NUMERICAL SIMULATION OF TURBULENT COMBUSTION - TOWARD PERFECT SIMULATION OF IC ENGINE -

  • Tanahashi, Mamoru;Seo, Takehiko;Sato, Makoto;Tsunemi, Akihiko;Miyauchi, Toshio
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.114-125
    • /
    • 2008
  • Current state and perspective of DNS of turbulence and turbulent combustion are discussed with feature trend of the fastest supercomputer in the world. Based on the perspective of DNS of turbulent combustion, possibility of perfect simulations of IC engine is shown. In 2020, the perfect simulation will be realized with 30 billion grid points by 1EXAFlops supercomputer, which requires 4 months CPU time. The CPU time will be reduced to about 4 days if several developments were achieved in the current fundamental researches. To shorten CPU time required for DNS of turbulent combustion, two numerical methods are introduced to full-explicit full-compressible DNS code. One is compact finite difference filter to reduce spatial resolution requirements and numerical oscillations in small scales, and another is well-known point-implicit scheme to avoid quite small time integration of the order of nanosecond for fully explicit DNS. Availability and accuracy of these numerical methods have been confirmed carefully for auto-ignition, planar laminar flame and turbulent premixed flames. To realize DNS of IC engine with realistic kinetic mechanism, several DNS of elemental combustion process in IC engines has been conducted.

DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS (삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

Fluid/Structure Coupled Analysis of 3D Turbine Blade Considering Stator-rotor Interaction (스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석)

  • Kim, Yu-Sung;Kim, Dong-Hyun;Kim, Yo-Han;Park, Oung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.764-772
    • /
    • 2009
  • In this study, fluid/structure coupled analyses have been conducted for 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras(S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction(FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.

Application of the Taguchi Method to the Analysis of the Numerical Parameters Influencing Springback Characteristics (스프링백 특성에 영향을 미치는 수치변수의 분석을 위한 다구치 실험계획법의 응용)

  • Kim, Hyung-Jong;Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.211-218
    • /
    • 2000
  • It is desirable but difficult to predict springback quantitatively and accurately for successful tool and process design in sheet stamping operations. The result of springback analysis by the finite element method (FEM) is sensitively influenced by numerical factors such as blank element size, number of integration points, punch velocity, contact algorithm, etc. In the present work, a parametric study by Taguchi method is performed in order to evaluate the influence of numerical factors on the result of springback analysis quantitatively and to obtain the combination of numerical factors which gives the best approximation to experimental data. Since springback is determined by the residual stress after forming process, it is important to evaluate stress distribution accurately. The oscillation in the time history curve of stress obtained by the dynamic-explicit finite element method says that the stress solution at termination time is in very unstable state. Therefore, a variability study is also carried out in this study in order to assess the stability of implicit springback analysis starting from the stress solution by explicit forming simulation. The U-draw bending process, one of the NUMISHEET '93 benchmark problems, is adopted as an application model because it is most popular one for evaluating the springback characteristic.

  • PDF

Elastic-Plastic Implicit Finite Element Method Considering Planar Anisotropy for Complicated Sheet Metal Forming Processes (탄소성 내연적 유한요소법을 이용한 평면 이방성 박판의 성형공정해석)

  • Yun, Jeong-Hwan;Kim, Jong-Bong;Yang, Dong-Yeol;Jeong, Gwan-Su
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.233-245
    • /
    • 1998
  • A new approach has been proposed for the incremental analysis of the nonsteady state large deformation of planar anisotropic elastic-plastic sheet forming. A mathematical brief review of a constitutive law for the incremental deformation theory has been presented from flow theory using the minimum plastic work path for elastic-plastic material. Since the material embedded coordinate system(Lagrangian quantity) is used in the proposed theory the stress integration procedure is completely objective. A new return mapping algorithm has been also developed from the general midpoint rule so as to achieve numerically large strain increment by successive control of yield function residuals. Some numerical tests for the return mapping algorithm were performed using Barlat's six component anisotropic stress potential. Performance of the proposed algorithm was shown to be good and stable for a large strain increment, For planar anisotropic sheet forming updating algorithm of planar anisotropic axes has been newly proposed. In order to show the effectiveness and validity of the present formulation earing simulation for a cylindrical cup drawing and front fender stamping analysis are performed. From the results it has been shown that the present formulation can provide a good basis for analysis for analysis of elastic-plastic sheet metal forming processes.

  • PDF

Estimate of Surface Ozone Concentration on Sunny Summer Days in Seoul Area by the Photochemical-Trajectory Model (광화학-궤적 모델에 의한 여름철 맑은 날 서울지방의 지상 오존 농도 추정)

  • 이시우;이광목
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.497-506
    • /
    • 2002
  • A Photochemical-Trajectory model was used to understand the production of ozone in the atmospheric boundary layer. This model was composed of the trajectory and the photochemical models. To calculate trajectories of air parcels, winds were obtained from the three-dimensional nonhydrostatic mesoscale model (PSU/NCAR MM5V2), and the results were interpolated into constant height surfaces. Numerical integration in the trajectory model was performed by the Runge-Kutta method. The photochemical model consisted of chemical reactions and photodissociation processes. Chemical equations were integrated by the semi-implicit Bulirsch-Stoer method. We performed our experiments from 21 July to 23 July 1994 during the summer time for Seoul area. During the time of maximum ozone concentration in Seoul, four trajectories of air parcels which traveled from Inchon to Seoul were selected. Ozone concentrations estimated by two models are compared with observed one in Seoul area and the photochemical-trajectory model is better fitted than pure photochemical model. During the selected period, high ozone concentrations in Seoul area were more influenced by transferred pollutants from Inchon than emitted pollutants in Seoul.

A Dynamic Explicit/Rigid-plastic Finite Element Analysis and its Application to Auto-body Panel Stamping Process (동적 외연적/강소성 유한요소 해석과 차체판넬성형에의 적용)

  • 정동원;양동열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.16-25
    • /
    • 1996
  • In the present work a rigid-plastic finite element formulation using dynamic explicit time integration scheme is proposed for numerical analysis of auto-body panel stamping processes. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM(abbreviated from Bending Energy Augmented Membrane) elements are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and the direct trial-and-error method. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oilpan, a fuel tank and a front fender. The numerical results of explicit analysis are compared with the implicit results with good agreements and it is shown that the explicit scheme requires much shorter computational time, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid-plastic finite element method enables an effective computation for complicated autobody panel stamping processes.

  • PDF