• Title/Summary/Keyword: Implicit integration

Search Result 211, Processing Time 0.023 seconds

Improvement on Block LU-SGS Scheme for Unstructured Mesh (비정렬 격자계에서 Block LU-SGS 기법의 개선에 관한 연구)

  • Kim Joo Sung;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.38-44
    • /
    • 2001
  • An efficient Gauss-Seidel time integration scheme is developed for solving the Euler and Navier-Stokes equations on unstructured meshes. Roe's FDS is used for the explicit residual computations and van Leer's FVS for evaluating implicit flux Jacobian. To reduce the memory requirement to a minimum level, off-diagonal flux Jacobian contributions are repeatedly calculated during the Gauss-Seidel sub-iteration process. Computational results based on the present scheme show that approximately $15\%$ of CPU time reduction is achieved while maintaining the memory requirement level to $50-60\%$ of the original Gauss-Seidel scheme.

  • PDF

Numerical Analysis of Flow- and Heat Transfer of a Spinning Blunt Body at Mach 5 (마하수 5에서 회전하는 blunt body의 유동 및 열전달에 관한 수치해석)

  • Lee Myung Sup;Lee Chang Ho;Park Seung O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.172-177
    • /
    • 2000
  • In this numerical work, three dimensional supersonic laminar flow and heat transfer of a blunt body(sphere-cone) at Mach 5 is simulated. The effects of angle of attack and the spin rate on the now and heat transfer are analysed. To solve the three dimensional compressible Wavier-Stokes equation, a finite volume method with the modified LDFSS scheme is employed for spatial discretization, and a point SGS implicit method is used for time integration. It is found that the heat transfer rate increases at the windward side and decreases at the leeward side with the angle of attack. The heat transfer rate at all surfaces slightly increases with the spin rate.

  • PDF

Dynamic Analysis of a Moving Vehicle on Flexible Beam structures ( I ) : General Approach

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.54-63
    • /
    • 2002
  • In recent years, mechanical systems such as high speed vehicles and railway trains moving on elastic beam structures have become a very important issue to consider. In this paper, a general approach, which can predict the dynamic behavior of a constrained mechanical system moving on a flexible beam structure, is proposed. Various supporting conditions for the foundation support are considered for the elastic beam structure. The elastic structure is assumed to be a non-uniform and linear Bernoulli-Euler beam with a proportional damping effect. Combined differential-algebraic equation of motion is derived using the multi-body dynamics theory and the finite element method. The proposed equations of motion can be solved numerically using the generalized coordinate partitioning method and predictor-corrector algorithm, which is an implicit multi-step integration method.

Assessment of Rotor Hover Performance Using a Node-based Flow Solver

  • Jung, Mun-Seung;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional viscous flow solver has been developed for the prediction of the aerodynamic performance of hovering helicopter rotor blades using unstructured hybrid meshes. The flow solver utilized a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart- Allmaras one-equation turbulence model. Calculations were performed at three operating conditions with varying tip Mach number and collective pitch setting for the Caradonna-Tung rotor in hover. Additional computations are made for the UH-60A rotor in hover. Reasonable agreements were obtained between the present results and the experiment in both blade loading and overall rotor performance. It was demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

Analysis of Static and Dynamic Frictional Contact of Deformable Bodies Including Large Rotations of the Contact Surfaces

  • Lee, Kisu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1276-1286
    • /
    • 2002
  • The numerical techniques are presented to solve the static and dynamic contact problems of deformable bodies having large rotations of the contact surfaces. The contact conditions on the possible contact surfaces are enforced by using the contact error vector, and an iterative scheme similar to augmented Lagrange multiplier method is employed to reduce the contact error vector monotonically. For dynamic contact problems using implicit time integration, a contact error vector is also defined by combining the displacement, velocity, and acceleration on the contact surface. The suggested iterative technique is implemented to ABAQUS by using the UEL subroutine UEL. In this work, after the computing procedures to solve the frictional contact problems are explained, the numerical examples are presented to compare the present solutions with those obtained by ABAQUS.

An Ergonomic Approach for Identification of Potential High Touch Products (High Touch 제품의 체계적인 개발대상 파악 방안)

  • Kim, Yong-Won;Kim, Chung-Se;Lee, Myeon-U;Lee, In-Jae
    • IE interfaces
    • /
    • v.1 no.1
    • /
    • pp.85-99
    • /
    • 1988
  • High Touch product is characterized by shorter life cycle together with specification/integration of existing function in order to capitalize the rapidly emerging high technology. R & D strategy for a development of High Touch product generally emphasizes two aspects ; Industrial Design (ID) and Ergonomic Design (ED). However, working knowledge on ED of a systematic identification of potential High Touch products is not readily available. The purpose of this study was three-folded : (1) To emphasize the fact that greater efforts should be geared to ED in High Touch design ; (2) To develop an ergonomic approach based on analysis of implicit human needs that identifies potential area of High Touch ; (3) To bubble with new and probable High Touch products in home electronics that actually demonstrate the validity of this study.

  • PDF

Inelastic transient analysis of piles in nonhomogeneous soil

  • Kucukarslan, S.;Banerjee, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.545-556
    • /
    • 2007
  • In this paper, a hybrid boundary element technique is implemented to analyze nonlinear transient pile soil interaction in Gibson type nonhomeogenous soil. Inelastic modeling of soil media is presented by introducing a rational approximation to the continuum with nonlinear interface springs along the piles. Modified $\ddot{O}$zdemir's nonlinear model is implemented and systems of equations are coupled at interfaces for piles and pile groups. Linear beam column finite elements are used to model the piles and the resulting governing equations are solved using an implicit integration scheme. By enforcing displacement equilibrium conditions at each time step, a system of equations is generated which yields the solution. A numerical example is performed to investigate the effects of nonlinearity on the pile soil interaction.

A dynamic analysis algorithm for RC frames using parallel GPU strategies

  • Li, Hongyu;Li, Zuohua;Teng, Jun
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1019-1039
    • /
    • 2016
  • In this paper, a parallel algorithm of nonlinear dynamic analysis of three-dimensional (3D) reinforced concrete (RC) frame structures based on the platform of graphics processing unit (GPU) is proposed. Time integration is performed using Newmark method for nonlinear implicit dynamic analysis and parallelization strategies are presented. Correspondingly, a parallel Preconditioned Conjugate Gradients (PCG) solver on GPU is introduced for repeating solution of the equilibrium equations for each time step. The RC frames were simulated using fiber beam model to capture nonlinear behaviors of concrete and reinforcing bars. The parallel finite element program is developed utilizing Compute Unified Device Architecture (CUDA). The accuracy of the GPU-based parallel program including single precision and double precision was verified in comparison with ABAQUS. The numerical results demonstrated that the proposed algorithm can take full advantage of the parallel architecture of the GPU, and achieve the goal of speeding up the computation compared with CPU.

A Numerical Analysis of Three-Dimensional Flow Within a Transonic Fan (천음속 팬의 3차원 유동에 관한 수치해석)

  • Chung, Juhyun;Ko, Sungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.82-91
    • /
    • 1999
  • A numerical analysis based on the three-dimensional Reynolds-averaged Navier-Stokes equation has been conducted to investigate the flow within a NASA rotor 67 transonic fan. General coordinate transformations are used to represent the complex blade geometry and an H-type grid is used. The governing equations are solved using implicit LU-SGS scheme for the time-marching integration and a standard ${\kappa}-{\varepsilon}$ model is used with wall functions for the turbulence modeling. The computations are compared with the experimental data and a detailed study of the flow structures near peak efficiency and near stall is presented. The calculated overall aerodynamic efficiency and three-dimensional shock system agree well with the laser anemometer data.

Development of A Three-Dimensional Euler Solver for Analysis of Contraction Flow (수축부 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.175-181
    • /
    • 1995
  • Three-Dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for the various contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreements.

  • PDF