• 제목/요약/키워드: Implicit Formulation

검색결과 107건 처리시간 0.03초

가압기밀림관의 수평배관내 열성층유동 (Thermal stratification in a horizontal pipe of pressurizer surge line)

  • 정일석;김유;염학기;박만흥
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1449-1457
    • /
    • 1996
  • In this paper, the unsteady two dimensional model for the thermal stratification in the pressurizer surge line of PWR plant has been proposed to numerically investigate the heat transfer and flow characteristics. The dimensionless governing equations are solved by using the Control Volume Formulation and SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The temperature profile of fluids and pipe wall with time are shown when the thermal stratification occurs in the horizontal pipe. The numerical result shows that the maximum dimensionless temperature difference is about O.514 between hot and cold section of pipe wall at dimensionless time 1,632.

원통컵 디프드로잉 공정의 귀발생 예측 (Prediction of Earings in the Deep Drawing Processes of a Cylindrical Cup)

  • 이승열;이승열;금영탁;정관수;박진무
    • 소성∙가공
    • /
    • 제4권3호
    • /
    • pp.222-232
    • /
    • 1995
  • The planar anisotripic FEM analysis for predicting earing profiles and draw-in amounts in the deep-drawing process is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vector and normal contact pressure. The consistent full set of governing relations, which is comprising euilbrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameters. The linear triangular membrane elements are used for depicting the formed sheet. In the numerical simulations of deep drawing processes of a flat-top cylindrical cup for 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

축대칭 박판 액압 성형 공정의 유한요소 시뮬레이션 (Finite Element Simulation of Axisymmetric Sheet Hydroforming Processes)

  • 구본영;김용석;금영탁
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.590-597
    • /
    • 2000
  • A finite element formulation lot the simulation of axisymmetric sheet hydroforming is proposed, and an implicit program is coded. In order to describe normal anisotropy of steel sheet, Hill's non-quadratic yield function (Hill, 1979) is employed. Frictional contacts among sheet surface, rigid tool surface, and flexible hydrostatic pressure are considered using mesh normal vectors based on finite element of the sheet. Applied hydraulic pressure is also considered as a function of forming rate and time and treated as an external loading. The complete set of the governing relations comprising equilibrium and interfacial equations is approximately linearized for Newton-Raphson algorithm. In order to verify the validity of the developed finite element formulation, the axisymmetric bulge test is simulated. Simulation results are compared with other FEM results and experimental measurements and showed good agreements. In axisymmetric hydroforming processes of a disk cover, formability changes are observed according to the hydraulic pressure curve changes.

  • PDF

병렬 처리를 이용한 용접 공정 유한 요소 해석 (Finite element analysis of welding process by parallel computation)

  • 임세영;김주완;최강혁;임재혁
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 추계학술발표대회 개요집
    • /
    • pp.156-158
    • /
    • 2003
  • An implicit finite element implementation for Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure is proposed in the framework of parallel computing. The implementation is based upon the multiplicative decomposition of deformation gradient and hyper elastic formulation. We examine the efficiency of parallel computation for the finite element analysis of a welded structure using domain-wise multi-frontal solver.

  • PDF

아크 용접 공정의 3차원 병렬처리 유한 요소 해석 (Three dimensional finite element analysis of art-welding processor via parallel compuating)

  • 임세영;김주완;김현규;조영삼
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 춘계학술발표대회 개요집
    • /
    • pp.161-163
    • /
    • 2002
  • An implicit finite element implementation for Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure is proposed in the framework of parallel computing. The implementation is based upon the updated Lagrangian formulation. We examine the efficiency of parallel compuatation for the finite element analysis of a welded structure using multi-frontal solver.

  • PDF

변태 소성을 고려한 용접 구조물의 유한 요소 해석 (Finite Element Analysis considering transformation plasticity for a welded structure)

  • 김주완;임세영
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2001년도 추계학술발표대회 개요집
    • /
    • pp.116-118
    • /
    • 2001
  • We propose an implicit numerical implementation for Leblond's transformation plasticity constitutive equations , which are widely used in welded steel structure. We apply Euler backward scheme rule to integrate the equations and determine the consistent tangent modulus. The implementation may be used with updated Lagrangian formulation. we test a simple butt-welding process to compare with SYSWELD and discuss the accuracy.

  • PDF

A dissipative family of eigen-based integration methods for nonlinear dynamic analysis

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.541-557
    • /
    • 2020
  • A novel family of controllable, dissipative structure-dependent integration methods is derived from an eigen-based theory, where the concept of the eigenmode can give a solid theoretical basis for the feasibility of this type of integration methods. In fact, the concepts of eigen-decomposition and modal superposition are involved in solving a multiple degree of freedom system. The total solution of a coupled equation of motion consists of each modal solution of the uncoupled equation of motion. Hence, an eigen-dependent integration method is proposed to solve each modal equation of motion and an approximate solution can be yielded via modal superposition with only the first few modes of interest for inertial problems. All the eigen-dependent integration methods combine to form a structure-dependent integration method. Some key assumptions and new techniques are combined to successfully develop this family of integration methods. In addition, this family of integration methods can be either explicitly or implicitly implemented. Except for stability property, both explicit and implicit implementations have almost the same numerical properties. An explicit implementation is more computationally efficient than for an implicit implementation since it can combine unconditional stability and explicit formulation simultaneously. As a result, an explicit implementation is preferred over an implicit implementation. This family of integration methods can have the same numerical properties as those of the WBZ-α method for linear elastic systems. Besides, its stability and accuracy performance for solving nonlinear systems is also almost the same as those of the WBZ-α method. It is evident from numerical experiments that an explicit implementation of this family of integration methods can save many computational efforts when compared to conventional implicit methods, such as the WBZ-α method.

Implicit 수치적분 방법을 이용한 조립토에 관한 구성방정식의 수행 (Implicit Numerical Integration of Two-surface Plasticity Model for Coarse-grained Soils)

  • 최창호
    • 한국지반공학회논문집
    • /
    • 제22권9호
    • /
    • pp.45-59
    • /
    • 2006
  • 탄소성 구성방정식은 주로 미분방적식(rate equation)으로 이루어져 있기 때문에 유한요소법 등을 이용한 지반구조물 해석시 미분방정식들에 대한 수치적분을 수행할 수 있는 방법이 필요하다. 구조물의 거동을 해석할시 미분방정식들을 위한 적분방법은 해석결과의 정확성과 유한요소법 모델링의 안전성에 큰 영향을 미치고 있다. 본 논문에서는 최근에 개발되어 사용되고 있는 흙에 관한 구성모델인 "Two-surface soil plasticity model (Manzari and Dafalias 1997)"을 Implicit return-mapping 수치적분방법을 이용하여 실행하는 과정을 제시한다. 본 연구에서 사용된 수치적분방법은 Closest-Point-Projection Method(CPPM) 방법으로 탄성 예측자-소성 교정자(elastic predictor-plastic corrector) 개념을 Implicit Backward Euler방법으로 체계화 시킨 알고리듬이다. 본 연구에서 수행한 "Two-surface soil plasticity model"은 조립토의 비선형거동을 해석하며, Bounding surface 개념 및 비선형 등방경화와 이동경화법칙을 사용하는 모델이다. 본 연구는 CPPM 방법이 정확하고 안정되며 유용한 수치적분을 수행할 수 있는 알고리듬이라는 것을 제시한다. 또한, CPPM 알고리듬은 구성방정식의 해를 반복적으로 해석하는 동안 "Consistent tangent operator $d{\sigma}/d{\varepsilon}$"를 제공하므로, 비선형 유한요소 해석이 2차(quadratic convergence rate)의 수렴 조건을 만족하는데 기여한다는 것을 보여준다.

효율적인 실시간 차량 시뮬레이션을 위한 자코비안 갱신이 불필요한 뉴턴 적분방법 (A Jacobian Update-Free Newton's Method for Efficient Real-Time Vehicle Simulation)

  • 강종수;임준현;배대성
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.337-344
    • /
    • 2014
  • While implicit integration methods such as Newton's method have excellent stability for the analysis of stiff and constrained mechanical systems, they have the drawback that the evaluation and LU-factorization of the system Jacobian matrix required at every time step are time-consuming. This paper proposes a Jacobian update-free Newton's method in order to overcome these defects. Because the motions of all bodies in a vehicle model are limited with respect to the chassis body, the equations are formulated with respect to the moving chassis-body reference frame instead of the fixed inertial reference frame. This makes the system Jacobian remain nearly constant, and thus allows the Newton's method to be free from the Jacobian update. Consequently, the proposed method significantly decreases the computational cost of the vehicle dynamic simulation. This paper provides detailed generalized formulation procedures for the equations of motion, constraint equations, and generalized forces of the proposed method.

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF