• Title/Summary/Keyword: Implementation Phase

Search Result 1,238, Processing Time 0.026 seconds

Accurate Characterization of T/R Modules with Consideration of Amplitude/Phase Cross Effect in AESA Antenna Unit

  • Ahn, Chang-Soo;Chon, Sang-Mi;Kim, Seon-Joo;Kim, Young-Sik;Lee, Juseop
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.417-424
    • /
    • 2016
  • In this paper, an accurate characterization of a fabricated X-band transmit/receive module is described with the process of generating control data to correct amplitude and phase deviations in an active electronically scanned array antenna unit. In the characterization, quantization errors (from both a digitally controlled attenuator and a phase shifter) are considered using not theoretical values (due to discrete sets of amplitude and phase states) but measured values (of which implementation errors are a part). By using the presented procedure for the characterization, each initial control bit of both the attenuator and the phase shifter is closest to the required value for each array element position. In addition, each compensated control bit for the parasitic cross effect between amplitude and phase control is decided using the same procedure. Reduction of the peak sidelobe level of an array antenna is presented as an example to validate the proposed procedure.

Recent Development in Computational Welding Mechanics (전산용접역학의 최근 동향)

  • Im, Se-Young;Han, You-Sung;Lee, Kye-Hyoung;Han, Myoung-Soo;Choi, Kang-Hyouk
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.87-91
    • /
    • 2009
  • Welding is one of the most important joining processes and the effect of welding residual stresses in the structure has a great deal of influence on its quality. In this paper, recent development in computational welding mechanics, particularly calculation of welding residual stresses, is introduced. The hypoelastic formulation of finite element analysis for thermoelastic-plastic deformation is applied to welding processes to find residual deformations and stresses. Leblond's phase evolution equation coupled with the energy equation is employed to calculate the phase volume fraction; this plays an important role as a kinetics parameter affecting phase fraction effects in the mechanical constitutive equation of welded materials. Furthermore, transformation plasticity is taken into account for an accurate evaluation of stress. The influence of the phase transformation and the transformation plasticity on residual stress is investigated by means of numerical analyses using metallurgical parameters in Leblond's phase evolution equation that are adjusted with respect to various cooling rates in a CCT-diagram. Coding implementation is conducted by way of the ABAQUS user subroutines, UMAT.

  • PDF

Implementation of Current Mode Control using Current Balance Controller of Multi-Phase Interleaved Boost Converter (다상 교호 승압컨버터의 전류평형제어기를 이용한 전류모드제어기 구현)

  • Park, Jong-Gyu;Choi, Hyun-Chil;Shin, Hwi-Beom
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.157-163
    • /
    • 2008
  • In the multi-phase interleaved converter with peak current mode control, current imbalance is measured when inductors of converter module are not exactly identical. In this paper current-sharing controller is proposed to balance phase current of converter modules. It also is designed to have good transient response. Proposed method implemented the 2-phase and 4-phase interleaved boost converter with imbalanced inductance. Experimental results verify the performance of Current share during the transient state of converter.

Three-Phase Current Source Type ZVS-PWM Controlled PFC Rectifier with Single Active Auxiliary Resonant Snubber and Its Feasible Evaluations

  • Masayoshi Yamamoto;Shinji Sato;Tarek Ahmed;Eiji Hiraki;Lee, Hyun-Woo;Mutsuo Nakaoka
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.127-133
    • /
    • 2004
  • This paper presents a prototype of three-phase current source zero voltage soft-switching PWM controlled PFC rectifier with Single Active Auxiliary Resonant Commutated Snubber (ARCS) circuit topology. The proposed three-phase PFC rectifier with sinewave current shaping and unity power factor scheme can operate under a condition of Zero Voltage Soft Switching (ZVS) in the main three phase rectifier circuit and zero current soft switching (ZCS) in auxiliary snubber circuits. The operating principle and steady-state performances of the proposed three-phase current source soft-switching PWM controlled PFC rectifier controlled by the DSP control implementation are evaluated and discussed on the basis of the experimental results of this active rectifier setup.

Design and Implementation of a Two-Phase Activity Recognition System Using Smartphone's Accelerometers (스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템의 설계 및 구현)

  • Kim, Jong-Hwan;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.2
    • /
    • pp.87-92
    • /
    • 2014
  • In this paper, we present a two-phase activity recognition system using smartphone's accelerometers. To consider the unique temporal pattern of accelerometer data for each activity, our system executes the decision-tree(DT) learning in the first phase, and then, in the second phase, executes the hidden Markov model(HMM) learning based on the sequences of classification results of the first phase classifier. Moreover, to build a robust recognizer for each activity, we trained our system using a large amount of data collected from different users, different positions and orientations of smartphone. Through experiments using 6720 examples collected for 6 different indoor activities, our system showed high performance based on its novel design.

A Comparative Study on the Performance of Two-Phase and Three-Phase Randomized Pulse Position PWM Scheme for Mitigation of Audible Switching Acoustic Noise in Motor Drives (모터 구동 장치의 가청 스위칭 소음 저감을 위한 2상 및 3상 랜덤 펄스 위치 PWM기법의 성능 비교)

  • 정영국;위석오;나석환;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.224-236
    • /
    • 2002
  • In this paper, a comparative study on the performance of two-phase and three-phase randomized pulse position PWM scheme for mitigation of audible switching acoustic noise in motor drives is done. In the randomized Pulse Position PW, each of two-Phase or three-phase PWM Pulses is located randomly in each switching interval. Simulation and experimental efforts were executed to investigate the spread effects of Power spectra of inverter output voltage, waveforms of ripple current and audible switching acoustic noise. As results, two-phase RP% scheme is more effective from the viewpoint of switching loss and ease of implementation while the three-phase RPWM scheme is more effective from the viewpoint of the spread effects of power spectra. Also, from the view point of the audible switching acoustic noise in motor drives, two-phase and three-phase RPW schemes are nearly the same.

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

An Efficient 3D Measurement Method that Improves the Fringe Projection Profilometry (Fringe Projection Profilometry를 개선한 효율적인 3D 측정 기법)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1973-1979
    • /
    • 2016
  • As technologies evolve, diverse 3D measurement techniques using cameras and pattern projectors have been developed continuously. In 3D measurement, high accuracy, fast speed, and easy implementation are very important factors. Recently, 3D measurement using multi-frequency fringe patterns for absolute phase computation has been widely used in the fringe projection profilometry. This paper proposes an improved method to compute the object's absolute phase using the reference plane's absolute phase and phase difference between the object and the reference plane. This method finds the object's absolute phase by adding the difference between the reference plane's wrapped phase and the object's wrapped phase to the reference plane's absolute phase already obtained in the calibration stage. Through this method, there is no need to obtain multi-frequency fringe patterns about new object for the absolute phase computation. Instead, we only need the object's phase difference relative to the reference planes's phase in the measurement stage.

Developing intranet hypermedia system using scenario-based object- oriented technique (시나리오 기반 객체 지향 기법을 이용한 인트라넷 하이퍼미디어 시스템 개발)

  • 이희석;유천수;이충석;김영환;김종호;조선형
    • Korean Management Science Review
    • /
    • v.14 no.2
    • /
    • pp.113-137
    • /
    • 1997
  • Intranet emerges as a key technology for building enterprise information system. This paper proposes a scenario-based object- oriented technique for designing intranet hypermedia information systems. The method consists of six phases such as domain analysis, object modeling, view design, navigational design, implementation design and construction. Users requirements are analyzed in the form of scenarios by the use fo a responsibility-driven object technology. Object-oriented views are generated from the resulting object model and then used for the subsequent navigational and implementation design. Implementation design phase deals integrating enterprise databases with distributed hypermedia systems by employing Java language. To demonstrate its usefulness, a real-life bank case is illustrated.

  • PDF

Optimization Design and Implementation of DC-DC Converter(LDC) for Electric Vehicle (전기자동차용 DC-DC 컨버터 최적설계)

  • Kwon, Yong-Hyo;Kim, Seung-Mo;Kim, Pyo-Soo;Kim, Mal-Su;Nam, Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.107-108
    • /
    • 2012
  • This paper presents design and implementation of the LDC(1.8 kW DC-DC Converter for Electric Vehicles). For Implementation of the LDC, the adapted topology is ZVS(Zero Voltage Switching) PSFB(Phase Shift Full Bridge) with Digital Control is adopted. Also, for the purpose of stable operation of the LDC in vehicle with variable electrical load condition, Continuous Voltage and Current Limit Control scheme based on PI controller are developed. According to real-car test mode, the prototype of proposed the LDC is verified with performance and stability. Thus, optimizing design and implement of the LDC are discussed, and experimental results are presented.

  • PDF